Cryptographic Properties of the Quantum Hashing Based on Expander Graphs

被引:0
|
作者
Zinnatullin, I. [1 ]
机构
[1] Kazan Fed Univ, Inst Computat Math & Informat Technol, Kazan 420008, Tatarstan, Russia
关键词
quantum hash function; quantum cryptography; expander graph;
D O I
10.1134/S1995080223020397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantum hashing is a useful technique in different computational and cryptographic scenarios in the quantum world. A set of random parameters is required to construct a quantum hashing scheme. For instance, random walks on expander graphs (expanders) are known to be efficient randomness generators in many areas of computer science. We analyze a scheme based on expanders. Collision resistance and preimage resistance of this scheme are considered. We show that quantum hashing based on expanders is collision-resistant (in quantum sense), and the considered scheme's accessible information is O(1).
引用
收藏
页码:776 / 787
页数:12
相关论文
共 50 条
  • [21] Quantum cryptographic entangling probe implementation
    Brandt, HE
    QUANTUM INFORMATION AND COMPUTATION III, 2005, 5815 : 150 - 158
  • [22] Constructing quantum Hash functions based on quantum walks on Johnson graphs
    Cao, Wei-Feng
    Zhang, Yong-Ce
    Yang, Yu-Guang
    Li, Dan
    Zhou, Yi-Hua
    Shi, Wei-Min
    QUANTUM INFORMATION PROCESSING, 2018, 17 (07)
  • [23] Quantum Hashing via is an element of-Universal Hashing Constructions and Classical Fingerprinting
    Ablayev, F.
    Ablayev, M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (02) : 89 - 96
  • [24] Constructing quantum Hash functions based on quantum walks on Johnson graphs
    Wei-Feng Cao
    Yong-Ce Zhang
    Yu-Guang Yang
    Dan Li
    Yi-Hua Zhou
    Wei-Min Shi
    Quantum Information Processing, 2018, 17
  • [25] Quantum Fingerprinting and Quantum Hashing. Computational and Cryptographical Aspects
    Ablayev, Farid
    Ablayev, Marat
    Vasiliev, Alexander
    Ziatdinov, Mansur
    BALTIC JOURNAL OF MODERN COMPUTING, 2016, 4 (04): : 860 - 875
  • [26] A Framework for Quantum-Classical Cryptographic Translation
    Nimbe, Peter
    Weyori, Benjamin Asubam
    Yeng, Prosper Kandabongee
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (03) : 793 - 818
  • [27] Practical aspects of quantum cryptographic key distribution
    Zbinden, H
    Gisin, N
    Huttner, B
    Muller, A
    Tittel, W
    JOURNAL OF CRYPTOLOGY, 2000, 13 (02) : 207 - 220
  • [28] Research, Development and Simulation of Quantum Cryptographic Protocols
    Anghel, C.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2013, 19 (04) : 65 - 70
  • [29] A Quantum Cryptographic Protocol for Secure Vehicular Communication
    Sutradhar, Kartick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3513 - 3522
  • [30] Expander Recovery Performance of Bipartite Graphs With Girth Greater Than 4
    Lu, Weizhi
    Li, Weiyu
    Zhang, Wei
    Xia, Shu-Tao
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (03): : 418 - 427