H-Bond Cross-Linked Polyimide Nanofiber-Modified Polyethylene Composite Separators for Lithium-Ion Batteries

被引:5
作者
Deng, Jianhui [1 ]
Zhang, Guoqing [1 ]
Yang, Xiaoqing [1 ]
Wen, Weiqiu [2 ]
Zhang, Birong [1 ]
Du, Weiqi [1 ]
Li, Xinkun [1 ]
Xie, Hanlin [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
MEMBRANES;
D O I
10.1021/acs.energyfuels.2c04065
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
H-bond cross-linked polyimide (HPI) nanofibermodified polyethylene (PE) composite separators with high thermal stability, excellent electrolyte wettability, and improved electrochemical performance are prepared by electrospinning and alkaline hydrolysis processes. Due to the high thermal stability of the layer of HPI nanofiber, the dimension stability of the HPI@PE separator is greatly enhanced compared to the PE separator, without obvious thermal shrinkage at 200 degrees C. In comparison to the PE separators, lithium-ion batteries (LIBs) assembled with the HPI@PE composite separators show better cycling performance and rate capability, which are ascribed to the high polarity and developed porosity of the HPI nanofiber layer, which gives the separator excellent electrolyte wettability (electrolyte uptake and retention are 204 and 65%, respectively), low bulk resistance (3.1 omega), and high ionic conductivity (0.46 mS cm-1). Therefore, the assembled Li/HPI@PE/LiCoO2 cell achieves a specific capacity of 105.5 mA h g-1 as well as a capacity retention of 80.7% after 200 cycles at the discharge rate of 1 C. These results indicate that the prepared HPI@PE separator is applicable toward safe, long-life, and high-rate LIBs.
引用
收藏
页码:6770 / 6777
页数:8
相关论文
共 41 条
[1]   Designing polyimide/polyacrylonitrile/polyimide sandwich composite separator for rechargeable lithium-ion batteries [J].
Cao, Dongqing ;
Deng, Jianhui ;
Jiang, Liqin ;
Li, Xinxi ;
Zhang, Guoqing .
JOURNAL OF ENERGY STORAGE, 2022, 55
[2]   Behaviour of battery separator under different charge rates according to poroelastodynamic model [J].
Chou, Dean ;
Cheng, Yu-Hao .
JOURNAL OF ENERGY STORAGE, 2022, 56
[3]   Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes [J].
Costa, Carlos M. ;
Lee, Yong-Hyeok ;
Kim, Jung-Hwan ;
Lee, Sang-Young ;
Lanceros-Mendez, Senentxu .
ENERGY STORAGE MATERIALS, 2019, 22 :346-375
[4]   Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery [J].
Deng, Jian-hui ;
Cao, Dong-qing ;
Li, Liang-jun ;
Chen, You-peng ;
Zhang, Guo-qing ;
Yang, Xiao-qing .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (27) :15215-15228
[5]   Simulation study on internal short circuit of lithium ion battery caused by lithium dendrite [J].
Deng, Jianhui ;
Yang, Xiaoqing ;
Zhang, Guoqing .
MATERIALS TODAY COMMUNICATIONS, 2022, 31
[6]   Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application [J].
Deng, Jianhui ;
Cao, Dongqing ;
Yang, Xiaoqing ;
Zhang, Guoqing .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[7]   Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review [J].
Duan, Jian ;
Tang, Xuan ;
Dai, Haifeng ;
Yang, Ying ;
Wu, Wangyan ;
Wei, Xuezhe ;
Huang, Yunhui .
ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (01) :1-42
[8]   Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review [J].
Francis, Candice F. J. ;
Kyratzis, Ilias L. ;
Best, Adam S. .
ADVANCED MATERIALS, 2020, 32 (18)
[9]   Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review [J].
Heidari, Ali Akbar ;
Mahdavi, Hossein .
CHEMICAL RECORD, 2020, 20 (06) :570-595
[10]   Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries [J].
Huo, Hanyu ;
Li, Xiaona ;
Chen, Yue ;
Liang, Jianneng ;
Deng, Sixu ;
Gao, Xuejie ;
Doyle-Davis, Kieran ;
Li, Ruying ;
Guo, Xiangxin ;
Shen, Yang ;
Nan, Ce-Wen ;
Sun, Xueliang .
ENERGY STORAGE MATERIALS, 2020, 29 :361-366