Control of Phase Separation and Crystallization for High-Efficiency and Mechanically Deformable Organic Solar Cells

被引:22
作者
Ding, Zicheng [1 ]
Zhang, Yi [1 ]
Su, Yueling [1 ]
Wu, Yin [1 ]
Han, Yanchun [2 ]
Zhao, Kui [1 ]
Liu, Shengzhong [1 ,3 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Minist Educ, Xian 710119, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, 5625 Renmin St, Changchun 130022, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, iChEM, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
film microstructure; mechanical deformation; molecular aggregation dynamics; photovoltaic performance; stretchable organic solar cells; MORPHOLOGY; ACCEPTOR; CRYSTALLINITY; POLYMERS; VOLTAGE; ROBUST;
D O I
10.1002/eem2.12421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stretchable organic solar cells (OSCs) have great potential as power sources for the next-generation wearable electronics. Although blending rigid photovoltaic components with soft insulating materials can easily endow the mechanical ductility of active layers, the photovoltaic efficiencies usually drops in the resulting OSCs. Herein, a high photovoltaic efficiency of 15.03% and a large crack-onset strain of 15.70% is simultaneously achieved based on a ternary blend consisting of polymer donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b ']dithiophene))-alt-(5,5-(1 ',3 '-di-2-thienyl-5 ',7 '-bis(2-ethylhexyl)benzo[1 ',2 '-c:4 ',5 '-c']dithiophene-4,8-dione)] (PM6), non-fullerene accepter 2,2 '-((2Z,2 ' Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2 '',3 '':4 ',5 ']thieno[2 ',3 ':4,5]pyrrolo[3,2-g]thieno[2 ',3 ':4,5]thieno[3,2-b]indole-2,10-diyl)bis (methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6), and soft elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) through the control of phase separation and crystallization. By employing a high-boiling point solvent additive 1-chloronaphthalene (CN) with different solubilities for PM6 and Y6, the aggregation dynamics of PM6 and Y6 as well as the film solidification process are dramatically altered, allowing for the different molecular rearrangement and liquid-liquid phase separation evolution. Consequently, the ternary film with optimal CN content presents decreased SEBS domains and moderately improved molecular ordering of PM6 and Y6, enabling effective mechanical deformation and charge generation/transport. The revealed corrections between the film-formation process, film microstructure, and photovoltaic/mechanical characteristics in the ternary blend provide deep understanding of the morphology control toward high-performance stretchable OSCs.
引用
收藏
页数:9
相关论文
共 69 条
[1]   Volatilizable Solid Additive-Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80% [J].
Bao, Sunan ;
Yang, Hang ;
Fan, Hongyu ;
Zhang, Jianqi ;
Wei, Zhixiang ;
Cui, Chaohua ;
Li, Yongfang .
ADVANCED MATERIALS, 2021, 33 (48)
[2]   Next-generation organic photovoltaics based on non-fullerene acceptors [J].
Cheng, Pei ;
Li, Gang ;
Zhan, Xiaowei ;
Yang, Yang .
NATURE PHOTONICS, 2018, 12 (03) :131-142
[3]   Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination [J].
Chong, Kaien ;
Xu, Xiaopeng ;
Meng, Huifeng ;
Xue, Jingwei ;
Yu, Liyang ;
Ma, Wei ;
Peng, Qiang .
ADVANCED MATERIALS, 2022, 34 (13)
[4]  
Chou K. W., 1923, ADV MATER, V2013, P25
[5]   Morphology optimization of photoactive layers in organic solar cells [J].
Cui, Chaohua ;
Li, Yongfang .
AGGREGATE, 2021, 2 (02)
[6]   Single-Junction Organic Photovoltaic Cell with 19% Efficiency [J].
Cui, Yong ;
Xu, Ye ;
Yao, Huifeng ;
Bi, Pengqing ;
Hong, Ling ;
Zhang, Jianqi ;
Zu, Yunfei ;
Zhang, Tao ;
Qin, Jinzhao ;
Ren, Junzhen ;
Chen, Zhihao ;
He, Chang ;
Hao, Xiaotao ;
Wei, Zhixiang ;
Hou, Jianhui .
ADVANCED MATERIALS, 2021, 33 (41)
[7]   The Future of Flexible Organic Solar Cells [J].
Fukuda, Kenjiro ;
Yu, Kilho ;
Someya, Takao .
ADVANCED ENERGY MATERIALS, 2020, 10 (25)
[8]   Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust All-Polymer Solar Cells [J].
Genene, Zewdneh ;
Lee, Jin-Woo ;
Lee, Sun-Woo ;
Chen, Qiaonan ;
Tan, Zhengping ;
Abdulahi, Birhan A. ;
Yu, Donghong ;
Kim, Taek-Soo ;
Kim, Bumjoon J. ;
Wang, Ergang .
ADVANCED MATERIALS, 2022, 34 (06)
[9]   Identifying tunneling effects of poly(aryl ether) matrices and boosting the efficiency, stability, and stretchability of organic solar cells [J].
Han, Jianhua ;
Bao, Feng ;
Wang, Xunchang ;
Huang, Da ;
Yang, Renqiang ;
Yang, Chunming ;
Jian, Xigao ;
Wang, Jinyan ;
Bao, Xichang ;
Chu, Junhao .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (05)
[10]   A Universal Method to Enhance Flexibility and Stability of Organic Solar Cells by Constructing Insulating Matrices in Active Layers [J].
Han, Jianhua ;
Bao, Feng ;
Huang, Da ;
Wang, Xunchang ;
Yang, Chunming ;
Yang, Renqiang ;
Jian, Xigao ;
Wang, Jinyan ;
Bao, Xichang ;
Chu, Junhao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (38)