The anti-Ramsey threshold of complete graphs

被引:2
作者
Kohayakawa, Yoshiharu [1 ]
Mota, Guilherme Oliveira [1 ]
Parczyk, Olaf [2 ]
Schnitzer, Jakob [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Free Univ Berlin, Fachbereich Math & Informat, Berlin, Germany
[3] Univ Hamburg, Fachbereich Math, Hamburg, Germany
基金
巴西圣保罗研究基金会;
关键词
Anti-Ramsey property; Proper colourings; Random graphs; Thresholds;
D O I
10.1016/j.disc.2023.113343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For graphs G and H, let G rb--> H denote the property that, for every proper edge-colouring of G, there is a rainbow H in G. For every graph H, the threshold function prbH = prbH(n) of this property in the random graph G(n, p) satisfies pHrb = O (n-1/m(2)(H)), where m(2)(H) denotes the so-called maximum 2-density of H. Completing a result of Nenadov, Person, Skoric acute accent , and Steger [J. Combin. Theory Ser. B 124 (2017), 1-38], we prove a matching lower bound for pKrbk for k 5. Furthermore, we show that pKrb4 =n-7/15 n-1/m(2)(K4). (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 12 条
  • [1] Anti-Ramsey threshold of cycles?
    Barros, Gabriel Ferreira
    Cavalar, Bruno Pasqualotto
    Mota, Guilherme Oliveira
    Parczyk, Olaf
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 323 : 228 - 235
  • [2] THRESHOLD FUNCTIONS
    BOLLOBAS, B
    THOMASON, A
    [J]. COMBINATORICA, 1987, 7 (01) : 35 - 38
  • [3] THRESHOLD FUNCTIONS FOR SMALL SUBGRAPHS
    BOLLOBAS, B
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1981, 90 (SEP) : 197 - 206
  • [4] Bollobas Bela, 1998, GRAD TEXT M, V184, DOI 10.1007/978-1-4612-0619-4
  • [5] Conlon D, 2014, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, P303
  • [6] Janson S., 2000, WIL INT S D, DOI 10.1002/9781118032718
  • [7] On an anti-Ramsey threshold for sparse graphs with one triangle
    Kohayakawa, Y.
    Konstadinidis, P. B.
    Mota, G. O.
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (02) : 176 - 187
  • [8] On an anti-Ramsey threshold for random graphs
    Kohayakawa, Y.
    Konstadinidis, P. B.
    Mota, G. O.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 40 : 26 - 41
  • [9] An algorithmic framework for obtaining lower bounds for random Ramsey problems
    Nenadov, Rajko
    Person, Yury
    Skoric, Nemanja
    Steger, Angelika
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 124 : 1 - 38
  • [10] THRESHOLD FUNCTIONS FOR RAMSEY PROPERTIES
    RODL, V
    RUCINSKI, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (04) : 917 - 942