Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer

被引:114
作者
Foersch, Sebastian [1 ]
Glasner, Christina [1 ]
Woerl, Ann-Christin [1 ,2 ]
Eckstein, Markus [3 ,4 ]
Wagner, Daniel-Christoph [1 ]
Schulz, Stefan [1 ]
Kellers, Franziska [1 ,5 ]
Fernandez, Aurelie [1 ]
Tserea, Konstantina [1 ]
Kloth, Michael [1 ]
Hartmann, Arndt [3 ,4 ]
Heintz, Achim [6 ]
Weichert, Wilko [7 ]
Roth, Wilfried [1 ]
Geppert, Carol [3 ,4 ]
Kather, Jakob Nikolas [8 ,9 ,10 ]
Jesinghaus, Moritz [7 ]
机构
[1] Univ Med Ctr Mainz, Inst Pathol, Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Comp Sci, Mainz, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Univ Hosp Erlangen, Inst Pathol, Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Univ Hosp Erlangen, Comprehens Canc Ctr EMN, Erlangen, Germany
[5] Univ Hosp Schleswig Holstein, Dept Pathol, Kiel, Germany
[6] Marien Hosp Mainz, Dept Gen Visceral & Vasc Surg, Mainz, Germany
[7] Tech Univ Munich, Inst Pathol, Munich, Germany
[8] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[9] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, England
[10] Univ Hosp Marburg, Inst Pathol, Else Kroener Fresenius Ctr Digital Hlth, Marburg, Germany
关键词
TUMOR-INFILTRATING LYMPHOCYTES; SPATIAL-ORGANIZATION; IMMUNE CELLS; CLASSIFICATION; DIAGNOSIS;
D O I
10.1038/s41591-022-02134-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although it has long been known that the immune cell composition has a strong prognostic and predictive value in colorectal cancer (CRC), scoring systems such as the immunoscore (IS) or quantification of intraepithelial lymphocytes are only slowly being adopted into clinical routine use and have their limitations. To address this we established and evaluated a multistain deep learning model (MSDLM) utilizing artificial intelligence (AI) to determine the AImmunoscore (AIS) in more than 1,000 patients with CRC. Our model had high prognostic capabilities and outperformed other clinical, molecular and immune cell-based parameters. It could also be used to predict the response to neoadjuvant therapy in patients with rectal cancer. Using an explainable AI approach, we confirmed that the MSDLM's decisions were based on established cellular patterns of anti-tumor immunity. Hence, the AIS could provide clinicians with a valuable decision-making tool based on the tumor immune microenvironment.
引用
收藏
页码:430 / 439
页数:22
相关论文
共 41 条
[1]   The Immunoscore: Colon Cancer and Beyond [J].
Angell, Helen K. ;
Bruni, Daniela ;
Barrett, J. Carl ;
Herbst, Ronald ;
Galon, Jerome .
CLINICAL CANCER RESEARCH, 2020, 26 (02) :332-339
[2]   TAMeless traitors: macrophages in cancer progression and metastasis [J].
Aras, Shweta ;
Zaidi, M. Raza .
BRITISH JOURNAL OF CANCER, 2017, 117 (11) :1583-1591
[3]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[4]   Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Argiles, G. ;
Tabernero, J. ;
Labianca, R. ;
Hochhauser, D. ;
Salazar, R. ;
Iveson, T. ;
Laurent-Puig, P. ;
Quirke, P. ;
Yoshino, T. ;
Taieb, J. ;
Martinelli, E. ;
Arnold, D. .
ANNALS OF ONCOLOGY, 2020, 31 (10) :1291-1305
[5]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[6]   Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune Landscape in Human Cancer [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Waldner, Maximilian ;
Obenauf, Anna C. ;
Angell, Helen ;
Fredriksen, Tessa ;
Lafontaine, Lucie ;
Berger, Anne ;
Bruneval, Patrick ;
Fridman, Wolf Herman ;
Becker, Christoph ;
Pages, Franck ;
Speicher, Michael R. ;
Trajanoski, Zlatko ;
Galon, Jerome .
IMMUNITY, 2013, 39 (04) :782-795
[7]   Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer [J].
Boehm, Kevin M. ;
Aherne, Emily A. ;
Ellenson, Lora ;
Nikolovski, Ines ;
Alghamdi, Mohammed ;
Vazquez-Garcia, Ignacio ;
Zamarin, Dmitriy ;
Roche, Kara Long ;
Liu, Ying ;
Patel, Druv ;
Aukerman, Andrew ;
Pasha, Arfath ;
Rose, Doori ;
Selenica, Pier ;
Causa Andrieu, Pamela I. ;
Fong, Chris ;
Capanu, Marinela ;
Reis-Filho, Jorge S. ;
Vanguri, Rami ;
Veeraraghavan, Harini ;
Gangai, Natalie ;
Sosa, Ramon ;
Leung, Samantha ;
McPherson, Andrew ;
Gao, JianJiong ;
Lakhman, Yulia ;
Shah, Sohrab P. .
NATURE CANCER, 2022, 3 (06) :723-+
[8]   Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer [J].
Brockmoeller, Scarlet ;
Echle, Amelie ;
Laleh, Narmin Ghaffari ;
Eiholm, Susanne ;
Malmstrom, Marie Louise ;
Kuhlmann, Tine Plato ;
Levic, Katarina ;
Grabsch, Heike Irmgard ;
West, Nicholas P. ;
Saldanha, Oliver Lester ;
Kouvidi, Katerina ;
Bono, Aurora ;
Heij, Lara R. ;
Brinker, Titus J. ;
Gogenur, Ismayil ;
Quirke, Philip ;
Kather, Jakob Nikolas .
JOURNAL OF PATHOLOGY, 2022, 256 (03) :269-281
[9]   Tissue microarray (TMA) technology:: miniaturized pathology archives for high-throughput in situ studies [J].
Bubendorf, L ;
Nocito, A ;
Moch, H ;
Sauter, G .
JOURNAL OF PATHOLOGY, 2001, 195 (01) :72-79
[10]   Pan-cancer integrative histology-genomic analysis via multimodal deep learning [J].
Chen, Richard J. ;
Lu, Ming Y. ;
Williamson, Drew F. K. ;
Chen, Tiffany Y. ;
Lipkova, Jana ;
Noor, Zahra ;
Shaban, Muhammad ;
Shady, Maha ;
Williams, Mane ;
Joo, Bumjin ;
Mahmood, Faisal .
CANCER CELL, 2022, 40 (08) :865-+