Phase Morphology, Mechanical, and Thermal Properties of Calcium Carbonate-Reinforced Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastics

被引:12
|
作者
Srihanam, Prasong [1 ]
Thongsomboon, Wiriya [1 ]
Baimark, Yodthong [1 ]
机构
[1] Mahasarakham Univ, Fac Sci, Ctr Excellence Innovat Chem, Dept Chem, Maha Sarakham 44150, Thailand
关键词
poly(lactic acid); poly(ethylene glycol); block copolymer; calcium carbonate; reinforcing filler; POLY(ETHYLENE GLYCOL); ACID); BIODEGRADATION; IMPROVEMENT; STARCH; POLY(L-LACTIDE); BEHAVIOR; PLA;
D O I
10.3390/polym15020301
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(L-lactide) (PLLA) is a promising candidate as a bioplastic because of its non-toxicity and biodegradability. However, the low flexibility of PLLA limits its use in many applications. Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-b-PEG-b-PLLA) block copolymer is of interest for bioplastic applications due to its superior flexibility compared to PLLA. The aim of this work is to modify PLLA-b-PEG-b-PLLA using a low-cost calcium carbonate (CaCO3) filler to improve material properties compared to PLLA/CaCO3 composites. The addition of CaCO3 enhanced the crystallinity and thermal stability for the PLLA-b-PEG-b-PLLA matrix but not for the PLLA matrix, as determined by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). Phase morphology investigation using scanning electron microscopy (SEM) revealed that the interfacial adhesion between PLLA-b-PEG-b-PLLA and CaCO3 was stronger than between PLLA and CaCO3. Additionally, tensile testing was carried out to determine the mechanical properties of the composites. With the addition of CaCO3, the tensile stress and Young's modulus of the PLLA-b-PEG-b-PLLA matrix were increased, whereas these properties of the PLLA matrix were significantly decreased. Thus, CaCO3 shows great promise as an inexpensive filler that can induce nucleation and reinforcing effects for PLLA-b-PEG-b-PLLA bioplastics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics
    Baimark, Yodthong
    Phromsopha, Theeraphol
    JOURNAL OF RENEWABLE MATERIALS, 2023, 11 (04) : 1881 - 1894
  • [2] Phase behavior of biodegradable amphiphilic poly(L,L-lactide)-b-poly(ethylene glycol)-b-poly(L,L-lactide)
    Mothe, C. G.
    Drumond, W. S.
    Wang, S. H.
    THERMOCHIMICA ACTA, 2006, 445 (01) : 61 - 66
  • [3] Thermal and mechanical properties of highly flexible poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) bioplastics: Effects of poly(ethylene glycol) block length and chain extender
    Baimark, Yodthong
    Srisuwan, Yaowalak
    JOURNAL OF ELASTOMERS AND PLASTICS, 2020, 52 (02): : 142 - 158
  • [4] Biodegradable nanosize particles of poly(L,L-lactide)-b-poly(ethylene glycol)-b-poly(L,L-lactide)
    Drumond, Walker S.
    Mothe, Cheila Goncalves
    Wang, Shu Hui
    POLYMER ENGINEERING AND SCIENCE, 2008, 48 (10): : 1939 - 1946
  • [5] Improvement in Crystallization, Thermal, and Mechanical Properties of Flexible Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastic with Zinc Phenylphosphate
    Pakkethati, Kansiri
    Srihanam, Prasong
    Manphae, Apirada
    Rungseesantivanon, Wuttipong
    Prakymoramas, Natcha
    Lan, Pham Ngoc
    Baimark, Yodthong
    POLYMERS, 2024, 16 (07)
  • [6] Effect of citric acid on thermal, phase morphological, and mechanical properties of poly(l-lactide)-b-poly(ethylene glycol)-b-poly(l-lactide)/thermoplastic starch blends
    Srisuwan, Yaowalak
    Srihanam, Prasong
    Phromsopha, Theeraphol
    Baimark, Yodthong
    E-POLYMERS, 2023, 23 (01)
  • [7] Thermal, Morphological, Mechanical, and Biodegradation Properties of Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)/High-Density Polyethylene Blends
    Baimark, Yodthong
    Srihanam, Prasong
    Srisuwan, Yaowalak
    POLYMERS, 2024, 16 (14)
  • [8] Improvement in Phase Compatibility and Mechanical Properties of Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)/thermoplastic Starch Blends with Citric Acid
    Srihanam, Prasong
    Srisuwan, Yaowalak
    Phromsopha, Theeraphol
    Manphae, Apirada
    Baimark, Yodthong
    POLYMERS, 2023, 15 (19)
  • [9] Improving Crystallization Properties, Thermal Stability, and Mechanical Properties of Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastic by Incorporating Cerium Lactate
    Chuangchai, Arriya
    Baimark, Yodthong
    POLYMERS, 2024, 16 (23)
  • [10] Effect of poly(L-lactide) chain length on microstructural and thermo-mechanical properties of poly(L-lactide)-b-poly (butylene carbonate)-b-poly(L-lactide) triblock copolymers
    Konwar, Debanga B.
    Sethy, Sucharita
    Satapathy, Bhabani K.
    Jacob, Josemon
    POLYMER, 2017, 123 : 87 - 99