Transcriptome and metabolome analyses reveal the efficiency of in vitro regeneration by TDZ pretreatment in mulberry

被引:6
|
作者
Luo, Yiwei [1 ]
Han, Yuanxiang [1 ]
Wei, Wuqi [1 ]
Han, Yue [1 ]
Yuan, Jianglian [1 ]
He, Ningjia [1 ]
机构
[1] Southwest Univ, Inst Sericulture & Syst Biol, State Key Lab Silkworm Genome Biol, Chongqing 400716, Peoples R China
关键词
Mulberry; TDZ; Regeneration; Transcriptome; Metabolome; SHOOT REGENERATION; PLANT-REGENERATION; BIOCHEMICAL-CHARACTERIZATION; MEDIATED TRANSFORMATION; RESPONSE REGULATORS; PETIOLE EXPLANTS; MORUS-INDICA; THIDIAZURON; CYTOKININ; ORGANOGENESIS;
D O I
10.1016/j.scienta.2022.111678
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Thidiazuron (TDZ) is a plant growth regulator that is widely used as a defoliant and cytokinin-like compound. Additionally, mulberry is an economically important crop. However, regeneration is difficult in most mulberry species, and the regulatory mechanism controlling the regeneration process remains unclear. In this work, an efficient in vitro shoot regeneration system for mulberry was established by TDZ application. The results showed that the optimum adventitious bud induction, 70.83% in tetraploid M. notabilis cv. Chuanbei1 (CB1) and 96.82% in M. abla cv. Yunhua (YH), was obtained by the shoot pretreatment method using petiolate leaves as explants. The high-frequency regeneration petiolate leaf explants of YH treated with TDZ (T8) and the control (CK) were subjected to multiomic analyses. The comparison of the TDZ-treated with the CK groups identified 494 upre-gulated differentially expressed genes (DEGs) and 293 downregulated DEGs. GO analysis indicated that these DEGs were related mostly to integral component of membrane, transcription factor activity, and phosphorelay signal transduction system. Metabolomic analysis identified 1,889 compounds, including 205 differentially accumulated metabolites (DAMs). Of these DAMs, the number of lipids and lipid-like molecules was highest and accounted for 27.8% of all DAMs. Transcriptome profile, metabolomic, and phytohormone integrated analyses revealed that TDZ rearranged adenine-type cytokinins (CTKs) and negatively regulated endogenous CTK signal transduction. Moreover, TDZ treatment enhanced auxin signal transduction by increasing the expression of auxin flux carrier genes and downstream regulated genes without changing auxin biosynthesis in mulberry. In sum-mary, this study provides a new method for mulberry in vitro regeneration and contributes to a better under-standing of the transcriptional and metabolic changes that occur in mulberry after TDZ treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Integrated transcriptome and metabolome analyses reveal the mechanism by which bagging treatment affects peel reddening in Orah mandarin
    Wen, Ke
    Li, Xulin
    Yin, Tuo
    Chen, Chaoying
    Zi, Yinqiang
    Zhao, Ke
    Pu, Jinan
    Yan, Wenxiu
    Wang, Xuemei
    Zhou, Xianyan
    Liu, Xiaozhen
    Zhang, Hanyao
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2025, 221
  • [32] Integrated Metabolome and Transcriptome Analyses Reveal the Mechanisms Regulating Flavonoid Biosynthesis in Blueberry Leaves under Salt Stress
    Ma, Bin
    Song, Yan
    Feng, Xinghua
    Guo, Pu
    Zhou, Lianxia
    Jia, Sijin
    Guo, Qingxun
    Zhang, Chunyu
    HORTICULTURAE, 2024, 10 (10)
  • [33] Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin
    Jiang, Chengxi
    Fei, Xuan
    Pan, Xiaojun
    Huang, Huilian
    Qi, Yu
    Wang, Xianqing
    Zhao, Qi
    Li, Fan
    Zhang, Liping
    Shao, Qingsong
    Li, Xiaokun
    Wu, Zhigang
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 170
  • [34] Integrative analyses of metabolome and transcriptome reveal the dynamic accumulation and regulatory network in rhizomes and fruits of Polygonatum cyrtonema Hua
    Ning, Luyun
    Xu, Yuanshu
    Luo, Lu
    Gong, Limin
    Liu, Yeman
    Wang, Zhi
    Wang, Wei
    BMC GENOMICS, 2024, 25 (01):
  • [35] A comprehensive integrated transcriptome and metabolome analyses to reveal key genes and essential metabolic pathways involved in CMS in kenaf
    Tang, Meiqiong
    Li, Zengqiang
    Luo, Dengjie
    Wei, Fan
    Kashif, Muhammad Haneef
    Lu, Hai
    Hu, Yali
    Yue, Jiao
    Huang, Zhen
    Tan, Wenye
    Li, Ru
    Chen, Peng
    PLANT CELL REPORTS, 2021, 40 (01) : 223 - 236
  • [36] Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash (Zanthoxylum L.)
    Zheng, Tao
    Zhang, Qun
    Su, Ke-xing
    Liu, Shu-ming
    FOOD CHEMISTRY: MOLECULAR SCIENCES, 2020, 1
  • [37] Transcriptome and Metabolome Analyses Reveal That Nitrate Strongly Promotes Nitrogen and Carbon Metabolism in Soybean Roots, but Tends to Repress It in Nodules
    Ishikawa, Shinji
    Ono, Yuki
    Ohtake, Norikuni
    Sueyoshi, Kuni
    Tanabata, Sayuri
    Ohyama, Takuji
    PLANTS-BASEL, 2018, 7 (02):
  • [38] Metabolome and Transcriptome Analyses Reveal Flower Color Differentiation Mechanisms in Various Sophora japonica L. Petal Types
    Guan, Lingshan
    Liu, Jinshi
    Wang, Ruilong
    Mu, Yanjuan
    Sun, Tao
    Wang, Lili
    Zhao, Yunchao
    Zhu, Nana
    Ji, Xinyue
    Lu, Yizeng
    Wang, Yan
    BIOLOGY-BASEL, 2023, 12 (12):
  • [39] Metabolome and transcriptome analyses reveal the molecular mechanisms of LcMYB1 regulating anthocyanin accumulation in litchi hairy roots
    Li, Sha
    Qin, Yaqi
    Jing, Shiqi
    Wang, Dan
    Zhang, Zhike
    Qin, Yonghua
    Hu, Guibing
    Zhao, Jietang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 200
  • [40] Integrative Metabolome and Transcriptome Analyses Reveal the Molecular Mechanism of Yellow-Red Bicolor Formation in Kalanchoe blossfeldiana Petals
    Feng, Guizhi
    Wang, Jiaying
    Pan, Zimeng
    Deng, Chengyan
    HORTICULTURAE, 2023, 9 (07)