Integration of genome-scale data identifies candidate sleep regulators

被引:7
|
作者
Lee, Yin Yeng [1 ,2 ]
Endale, Mehari [3 ]
Wu, Gang [1 ]
Ruben, Marc D. [1 ]
Francey, Lauren J. [1 ]
Morris, Andrew R. [3 ]
Choo, Natalie Y. [4 ]
Anafi, Ron C. [5 ]
Smith, David F. [4 ,6 ,7 ,8 ,9 ]
Liu, Andrew C.
Hogenesch, John B. [1 ,8 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Dept Pediat, Div Human Genet & Immunobiol, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Dept Pharmacol & Syst Physiol, Coll Med, Cincinnati, OH 45229 USA
[3] Univ Florida, Dept Physiol & Aging, Coll Med, Gainesville, FL 32610 USA
[4] Cincinnati Childrens Hosp Med Ctr, Div Pediat Otolaryngol Head & Neck Surg, Cincinnati, OH 45229 USA
[5] Univ Penn, Chronobiol & Sleep Inst, Perelman Sch Med, Dept Med, Philadelphia, PA 19104 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Pulm Med, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Sleep Ctr, Cincinnati, OH 45229 USA
[8] Cincinnati Childrens Hosp Med Ctr, Ctr Circadian Med, Cincinnati, OH 45229 USA
[9] Univ Cincinnati, Dept Otolaryngol Head & Neck Surg, Coll Med, Cincinnati, OH 45229 USA
关键词
sleep regulation; genetics; machine learning; genome-scale data integration; NF-KAPPA-B; GENE PRIORITIZATION; EXPRESSION ATLAS; WR DOMAIN; MUTATION; WAKEFULNESS; TWIST1; MOUSE; INFLAMMATION; PRINCIPLES;
D O I
10.1093/sleep/zsac279
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study Objectives Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. Methods We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. Results Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-kappa B pathway and showed that chronic activation of NF-kappa B in a genetic mouse model impacted the sleep-wake patterns. Conclusion Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Integration and analysis of genome-scale data from gliomas
    Gregory Riddick
    Howard A. Fine
    Nature Reviews Neurology, 2011, 7 : 439 - 450
  • [2] Integration and analysis of genome-scale data from gliomas
    Riddick, Gregory
    Fine, Howard A.
    NATURE REVIEWS NEUROLOGY, 2011, 7 (08) : 439 - 450
  • [3] Methods for integration of transcriptomic data in genome-scale metabolic models
    Kim, Min Kyung
    Lun, Desmond S.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2014, 11 (18): : 59 - 65
  • [4] Integration of gene expression data into genome-scale metabolic models
    Åkesson, M
    Förster, J
    Nielsen, J
    METABOLIC ENGINEERING, 2004, 6 (04) : 285 - 293
  • [5] Integration of expression data in genome-scale metabolic network reconstructions
    Blazier, Anna S.
    Papin, Jason A.
    FRONTIERS IN PHYSIOLOGY, 2012, 3
  • [6] A Genome-Scale Integration and Analysis of Lactococcus lactis Translation Data
    Racle, Julien
    Picard, Flora
    Girbal, Laurence
    Cocaign-Bousquet, Muriel
    Hatzimanikatis, Vassily
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (10)
  • [7] Genome-Scale CRISPR-Cas12a Screen Identifies Novel Fetal Hemoglobin Regulators
    Traxler, Elizabeth A.
    Komar, Chad
    Saari, Megan
    Thrasher, A. Josephine
    Qin, Kunhua
    Khandros, Eugene
    Hotan, Quynn
    Abdulmalik, Osheiza
    Shao, Claire
    Chen, Qingzhou
    Minn, Andy J.
    Keller, Cheryl A.
    Shi, Junwei
    Blobel, Gerd A.
    BLOOD, 2023, 142
  • [8] Integration and Analysis of Omics Data Using Genome-Scale Metabolic Models
    Moskon, Miha
    Rezen, Tadeja
    METABOLITES, 2024, 14 (11)
  • [9] Challenges in experimental data integration within genome-scale metabolic models
    Bourguignon, Pierre-Yves
    Samal, Areejit
    Kepes, Francois
    Jost, Juergen
    Martin, Olivier C.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2010, 5
  • [10] Integration of proteomic data with genome-scale metabolic models: A methodological overview
    Zare, Farid
    Fleming, Ronan M. T.
    PROTEIN SCIENCE, 2024, 33 (10)