Monotonicity and concavity properties of the Gaussian hypergeometric functions, with applications

被引:5
作者
Wang, Miao-Kun [1 ]
Zhao, Tie-Hong [2 ]
Ren, Xue-Jing [3 ]
Chu, Yu-Ming [1 ,4 ]
He, Zai-Yin [5 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China
[3] Changzhou Inst Technol, Sch Sci, Changzhou 213032, Peoples R China
[4] Hangzhou Normal Univ, Inst Adv Study Honoring Chen Jian Gong, Hangzhou 311121, Peoples R China
[5] Hunan Univ, Sch Math, Changsha 410082, Peoples R China
关键词
Gaussian hypergeometric function; Complete p-elliptic integrals; Ratio function; Monotonicity; Concavity; COMPLETE ELLIPTIC INTEGRALS; UPPER BOUND FUNCTION; MODULAR EQUATIONS; INEQUALITIES; TRANSFORMATION; CONVEXITY; FORMULAS; SERIES;
D O I
10.1007/s13226-022-00325-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the monotonicity and concavity properties of certain functions involving the Gaussian hypergeometric function. With these results, we not only obtain sharp bounds for the ratio of hypergeometric functions which extend recently discovered inequalities for k-balanced hypergeometric functions, and but also give an affirmative answer to an open problem proposed by Qiu and Vuorinen. In addition, as by-products, some monotonicity theorems for complete p-elliptic integrals and inequalities for generalized Grotzsch ring function are established.
引用
收藏
页码:1105 / 1124
页数:20
相关论文
共 62 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS F
  • [2] Sharp inequalities for the complete elliptic integral of the first kind
    Alzer, H
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 309 - 314
  • [3] Monotonicity theorems and inequalities for the complete elliptic integrals\
    Alzer, H
    Qiu, SL
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) : 289 - 312
  • [4] INEQUALITIES FOR THE RATIO OF COMPLETE ELLIPTIC INTEGRALS
    Alzer, Horst
    Richards, Kendall
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1661 - 1670
  • [5] TOPICS IN SPECIAL FUNCTIONS. II
    Anderson, G. D.
    Vamanamurthy, M. K.
    Vuorinen, M.
    [J]. CONFORMAL GEOMETRY AND DYNAMICS, 2007, 11 : 250 - 270
  • [6] Modular equations and distortion functions
    Anderson, G. D.
    Qiu, S. -L.
    Vuorinen, M.
    [J]. RAMANUJAN JOURNAL, 2009, 18 (02) : 147 - 169
  • [7] AN INEQUALITY FOR COMPLETE ELLIPTIC INTEGRALS
    ANDERSON, GD
    DUREN, P
    VAMANAMURTHY, MK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 182 (01) : 257 - 259
  • [8] Elliptic integral inequalities, with applications
    Anderson, GD
    Qiu, SL
    Vamanamurthy, MK
    [J]. CONSTRUCTIVE APPROXIMATION, 1998, 14 (02) : 195 - 207
  • [9] Generalized elliptic integrals and modular equations
    Anderson, GD
    Qiu, SL
    Vamanamurthy, MK
    Vuorinen, M
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (01) : 1 - 37
  • [10] INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC-FUNCTIONS
    ANDERSON, GD
    BARNARD, RW
    RICHARDS, KC
    VAMANAMURTHY, MK
    VUORINEN, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (05) : 1713 - 1723