On separably integrable symmetric convex bodies

被引:0
作者
Yaskin, Vladyslav [1 ]
Zawalski, Bartlomiej [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[2] Polish Acad Sci, Inst Math, Torun, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
Convex body; Isotropic volume function; Fourier transform; Valued fields; VARIABLES; DOMAINS;
D O I
10.1016/j.aim.2024.109527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An infinitely smooth symmetric convex body K C R-d is called k-separably integrable, 1 <= k < d, if its k-dimensional isotropic volume function V-K,V-H(t) = H-d ({X is an element of K : dist (X, H-perpendicular to ) <= t}) can be written as a finite sum of products in which the dependence on H is an element of Gr(k)(R-d) and t is an element of R is separated. In this paper, we will obtain a complete classification of such bodies. Namely, we will prove that if d -k is even, then K is an ellipsoid, and if d - k is odd, then K is a Euclidean ball. This generalizes the recent classification of polynomially integrable convex bodies in the symmetric case. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Fiber Convex Bodies
    Léo Mathis
    Chiara Meroni
    [J]. Discrete & Computational Geometry, 2023, 70 : 1451 - 1475
  • [32] On the girth of convex bodies
    H. Groemer
    [J]. Archiv der Mathematik, 1997, 69 : 75 - 81
  • [33] On the quermassintegrals of convex bodies
    Chang Jian Zhao
    Wing Sum Cheung
    [J]. Journal of Inequalities and Applications, 2013
  • [34] ON THE FINITE DIMENSIONALITY OF INTEGRABLE DEFORMATIONS OF STRICTLY CONVEX INTEGRABLE BILLIARD TABLES
    Huang, Guan
    Kaloshin, Vadim
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2019, 19 (02) : 307 - 327
  • [35] On the total perimeter of homothetic convex bodies in a convex container
    Dumitrescu A.
    Tóth C.D.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2): : 515 - 532
  • [36] GAUSSIAN PROCESSES AND CONVEX BODIES
    Vitale, R. A.
    [J]. ECS10: THE10TH EUROPEAN CONGRESS OF STEREOLOGY AND IMAGE ANALYSIS, 2009, : 89 - 93
  • [37] Approximation of Convex Bodies by ConvexBodies
    国起
    StenKaijser
    [J]. Northeastern Mathematical Journal, 2003, (04) : 323 - 332
  • [38] The blocking numbers of convex bodies
    Dalla, L
    Larman, DG
    Mani-Levitska, P
    Zong, C
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (2-3) : 267 - 277
  • [39] Contact points of convex bodies
    M. Rudelson
    [J]. Israel Journal of Mathematics, 1997, 101 : 93 - 124
  • [40] On convex bodies of constant width
    Bazylevych, L. E.
    Zarichnyi, M. M.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (11) : 1699 - 1704