A robust superwetting nickel foam with tuning pore features for stable and efficient separation of oil-in-water emulsions

被引:5
|
作者
Tan, Qing [1 ]
Chen, Zehao [1 ]
Zuo, Jihao [2 ]
Wang, Yunjia [1 ]
Jin, Xuekai [1 ]
Wen, Xiufang [1 ]
Xu, Shouping [1 ]
Nong, Yunjun [3 ]
Pi, Pihui [1 ]
机构
[1] Sch Chem & Chem Engn, Guangdong Prov Key Lab Green Chem Prod Technol, Guangzhou 510640, Peoples R China
[2] Ongkai Univ Agr & Engn, Sch Chem & Chem Engn, Guangzhou 510225, Peoples R China
[3] China Natl Analyt Ctr, Guangdong Prov Key Lab Emergency Test Dangerous Ch, Guangzhou 510070, Peoples R China
基金
中国国家自然科学基金;
关键词
Oil -water separation; Superhydrophilicity; Nickel foam; Demulsification; Oil-in-water emulsion; SPECIAL WETTABILITY; OIL/WATER; HYDROPHOBICITY; FABRICATION; SURFACES;
D O I
10.1016/j.seppur.2024.126602
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, SiO2-PNF/NiCo, a superhydrophilic nickel foam with tuning pore features was fabricated by introducing SiO2 nanofibers and in situ growing nickel cobaltate (NiCo2O4) micro-nano structures within the nickel foam. The pore size of the nickel foam was adjusted from initial 150-300 mu m to modified 20-65 mu m, while the porosity was still maintained above 70 %. A self-assembly columnar separator was applied to separate oil and water, with an inner diameter of 1.5 cm and an effective filtration area of 1.77 cm(2). With the aid of the separator, the SiO2-PNF/NiCo could rapidly separate the n-hexane/water immiscible mixture with an extremely high flux of over 1.8 x 10(5) L<middle dot>m(-2)<middle dot>h(-1) and an exceptional separation efficiency of over 99 %. For a variety of surfactant-free oil-in-water emulsions, it also demonstrated exceptional separation efficiencies over 99.5 % and high permeation fluxes reaching 4 x 10(4) L<middle dot>m(-2)<middle dot>h(-1). Moreover, different surfactant-stabilized oil-in-water emulsions can also be effectively separated, with a flux up to 3.3 x 10(4) L<middle dot>m(-2)<middle dot>h(-1) and a maximum separation efficiency of 99.76 %. Notably, even after enduring 30 cycles of abrasion, peeling and 48 h of chemical corrosion, the robust nickel foam still retained its high UWOCA (>158 degrees), good surface roughness and stable separation performance, highlighting its potential for industrial wastewater treatment and oil spill remediation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A universal strategy for efficient separation from single emulsion separation to oil-in-water and water-in-oil mixed emulsions
    Xiang, Qian
    Liu, Yan
    Wang, Bo
    Huang, Chengyi
    Wang, Lilin
    He, Jinsong
    Tian, Dong
    Shen, Fei
    Zhang, Yanzong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [22] Robust superwetting polytetrafluoroethylene membranes with interlayer-bridged inorganic nanocoating for efficient oil/water separation
    Zhang, Mengxiao
    Wang, Xiaohe
    Xiong, Ruiyan
    Feng, Weilin
    Fang, Chuanjie
    Wang, Jianyu
    Zhu, Liping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 329
  • [23] Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions
    Gao, Shou Jian
    Zhu, Yu Zhang
    Zhang, Feng
    Jin, Jian
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) : 2895 - 2902
  • [24] Electrostatic assembly of superwetting porous nanofibrous membrane toward oil-in-water microemulsion separation
    Wang, Na
    Zhai, Yunyun
    Yang, Yuyan
    Yang, Xue
    Zhu, Zhigao
    CHEMICAL ENGINEERING JOURNAL, 2018, 354 : 463 - 472
  • [25] Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions
    Ge, Jianlong
    Zong, Dingding
    Jin, Qing
    Yu, Jianyong
    Ding, Bin
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (10)
  • [26] A pH-responsive superwetting nanostructured copper mesh film for separating both water-in-oil and oil-in-water emulsions
    Cheng, Zhongjun
    Li, Chong
    Lai, Hua
    Du, Ying
    Liu, Hongwei
    Liu, Min
    Jin, Liguo
    Zhang, Chungang
    Zhang, Naiqing
    Sun, Kening
    RSC ADVANCES, 2016, 6 (76) : 72317 - 72325
  • [27] Controllable process to construct robust superhydrophobic membrane with tunable pore size for efficient separation of oil-water mixtures and emulsions
    Xu, Guang
    Jiang, Xian
    Yang, Fuchao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [28] Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions Using a Janus Cotton Fabric
    Wang, Zijie
    Wang, Yu
    Liu, Guojun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) : 1291 - 1294
  • [29] In Situ Generated Janus Fabrics for the Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions
    Wang, Zijie
    Liu, Guojun
    Huang, Shuaishuai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (47) : 14610 - 14613
  • [30] Superhydrophilic/Superoleophobic Mesh/Chitosan-MnO2 Membrane for Robust and Highly Efficient Separation of Oil-in-Water Emulsions
    Fatemeh Elmi
    Fatemeh Hosseini Valookolaee
    Mojtaba Shokrollahzadeh Taleshi
    Water, Air, & Soil Pollution, 2023, 234