Non-invasive prediction mechanism for COVID-19 disease using machine learning algorithms

被引:0
作者
Bhardwaj, Arnav [1 ]
Agarwal, Hitesh [1 ]
Rani, Anuj [2 ]
Srivastava, Prakash [3 ]
Kumar, Manoj [4 ]
Gupta, Sunil [5 ]
机构
[1] Amity Univ, Dept Comp Sci & Engn, ASET, Noida, Uttar Pradesh, India
[2] GL Bajaj Inst Technol & Management, Dept Comp Sci, Greater Noida, India
[3] Graph Era Deemed Be Univ, Dept Comp Sci & Engn, Dehra Dun, India
[4] Univ Wollongong Dubai, Fac Engn & Informat Sci, Dubai Knowledge Pk, Dubai, U Arab Emirates
[5] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun, Uttarakhand, India
关键词
COVID-19; non-invasive; symptoms; machine learning;
D O I
10.1504/IJCIS.2024.137406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper has focused on developing a model to detect non-diagnostically whether the person is infected with the COVID-19 disease using all relevant symptoms and details mentioned by the person and then comparing it with a pre-defined dataset of positive cases using machine learning. Different models have been developed to predict the same but none of them focused on the detection of COVID-19 based on symptoms. In a developing nation with a huge population, where the diagnostic availability is scarce, just scanning the body temperature will not help in detection of COVID-19 of a particular individual. This paper presents a model that can predict COVID-19 cases without any testing kit to an accuracy of 99.30%, performing better than other similar approaches with objective to put forward a method that can reduce the need of producing testing kits and also the need to wait for hours before we get the results.
引用
收藏
页码:111 / 124
页数:15
相关论文
共 14 条
[1]   COVID-19 medical papers have fewer women first authors than expected [J].
Andersen, Jens Peter ;
Nielsen, Mathias Wullum ;
Simone, Nicole L. ;
Lewiss, Resa E. ;
Jagsi, Reshma .
ELIFE, 2020, 9 :1-7
[2]   Effect of weather on COVID-19 spread in the US: A prediction model for India in 2020 [J].
Gupta, Sonal ;
Raghuwanshi, Gourav Singh ;
Chanda, Arnab .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 728
[3]   Improvements to Platt's SMO algorithm for SVM classifier design [J].
Keerthi, SS ;
Shevade, SK ;
Bhattacharyya, C ;
Murthy, KRK .
NEURAL COMPUTATION, 2001, 13 (03) :637-649
[4]   Prediction of COVID-19-Pneumonia based on Selected Deep Features and One Class Kernel Extreme Learning Machine [J].
Khan, Muhammad Attique ;
Kadry, Seifedine ;
Zhang, Yu-Dong ;
Akram, Tallha ;
Sharif, Muhammad ;
Rehman, Amjad ;
Saba, Tanzila .
COMPUTERS & ELECTRICAL ENGINEERING, 2021, 90
[5]   Sparse multinomial logistic regression: Fast algorithms and generalization bounds [J].
Krishnapuram, B ;
Carin, L ;
Figueiredo, MAT ;
Hartemink, AJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) :957-968
[6]   Machine learning for assisting cervical cancer diagnosis: An ensemble approach [J].
Lu, Jiayi ;
Song, Enmin ;
Ghoneim, Ahmed ;
Alrashoud, Mubarak .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 106 :199-205
[7]   A model based study on the dynamics of COVID-19: Prediction and control [J].
Mandal, Manotosh ;
Jana, Soovoojeet ;
Nandi, Swapan Kumar ;
Khatua, Anupam ;
Adak, Sayani ;
Kar, T. K. .
CHAOS SOLITONS & FRACTALS, 2020, 136
[8]   Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? [J].
Mao, Kang ;
Zhang, Hua ;
Yang, Zhugen .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (07) :3733-3735
[9]   Automated detection of COVID-19 cases using deep neural networks with X-ray images [J].
Ozturk, Tulin ;
Talo, Muhammed ;
Yildirim, Eylul Azra ;
Baloglu, Ulas Baran ;
Yildirim, Ozal ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
[10]   COVID-19 pandemic: Practical considerations on the organization of an allergy clinic-An EAACI/ARIA Position Paper [J].
Pfaar, Oliver ;
Klimek, Ludger ;
Jutel, Marek ;
Akdis, Cezmi A. ;
Bousquet, Jean ;
Breiteneder, Heimo ;
Chinthrajah, Sharon ;
Diamant, Zuzana ;
Eiwegger, Thomas ;
Fokkens, Wytske J. ;
Fritsch, Hans-Walter ;
Nadeau, Kari C. ;
O'Hehir, Robyn E. ;
O'Mahony, Liam ;
Rief, Winfried ;
Sampath, Vanitha ;
Schedlowski, Manfred ;
Torres, Maria Jose ;
Traidl-Hoffmann, Claudia ;
Wang, De Yun ;
Zhang, Luo ;
Bonini, Matteo ;
Brehler, Randolf ;
Brough, Helen Annaruth ;
Chivato, Tomas ;
Del Giacco, Stefano R. ;
Dramburg, Stephanie ;
Gawlik, Radoslaw ;
Gelincik, Asli ;
Hoffmann-Sommergruber, Karin ;
Hox, Valerie ;
Knol, Edward F. ;
Lauerma, Antti ;
Matricardi, Paolo M. ;
Mortz, Charlotte G. ;
Ollert, Markus ;
Palomares, Oscar ;
Riggioni, Carmen ;
Schwarze, Juergen ;
Skypala, Isabel ;
Untersmayr, Eva ;
Walusiak-Skorupa, Jolanta ;
Ansotegui, Ignacio J. ;
Bachert, Claus ;
Bedbrook, Anna ;
Bosnic-Anticevich, Sinthia ;
Brussino, Luisa ;
Canonica, Giorgio Walter ;
Cardona, Victoria ;
Carreiro-Martins, Pedro .
ALLERGY, 2021, 76 (03) :648-676