Computation Offloading in Multi-Cell Networks With Collaborative Edge-Cloud Computing: A Game Theoretic Approach

被引:11
|
作者
Wu, Liantao [1 ,2 ]
Sun, Peng [3 ]
Wang, Zhibo [4 ]
Li, Yanjun [5 ]
Yang, Yang [6 ,7 ,8 ]
机构
[1] Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] East China Normal Univ, Software Engn Inst, Shanghai 200062, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[5] Zhejiang Univ Technol, Sch Comp Sci & Technol, Hangzhou 310023, Peoples R China
[6] Terminus Grp, Beijing 100027, Peoples R China
[7] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[8] Shenzhen Smart City Technol Dev Grp Co Ltd, Shenzhen 518046, Peoples R China
基金
中国国家自然科学基金;
关键词
Servers; Games; Task analysis; Costs; Delays; Cloud computing; Energy consumption; Collaborative edge-cloud computing; computation offloading; potential game; multi-cell interference; RESOURCE-ALLOCATION; OPTIMIZATION; MANAGEMENT;
D O I
10.1109/TMC.2023.3246462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the widespread application of 5G and the Internet of things (IoT), edge computing and cloud computing have been collaboratively utilized for task offloading and processing. However, though the massive devices (e.g., smartphones) are organized into multi-cells, most of the existing works do not explore the computation offloading for edge-cloud computing under inter-cell interference. Thus, the offloading decisions may be inappropriate as the transmission rate is overestimated. To address this issue, we propose COMEC, a novel Computation Offloading scheme in Multi-cell networks with Edge-Cloud collaboration, which could minimize the total cost in terms of delay and energy consumption. Specifically, we first formulate COMEC as an optimization problem taking into account inter-cell interference. Then, considering the offloading decisions of all users are coupled, a non-cooperative game is formulated to minimize the total cost of each user in a distributed manner. We prove that this game is a general (ordinal) potential game and possesses a pure strategy Nash equilibrium (NE). Based on the finite improvement property of the potential game, we develop the corresponding computation offloading algorithm to achieve the NE. Finally, simulation results show that the proposed scheme can achieve superior performance in overall system cost compared with other baselines.
引用
收藏
页码:2093 / 2106
页数:14
相关论文
共 50 条
  • [1] A Potential Game Theoretic Approach to Computation Offloading Strategy Optimization in End-Edge-Cloud Computing
    Ding, Yan
    Li, Kenli
    Liu, Chubo
    Li, Keqin
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (06) : 1503 - 1519
  • [2] New Three-Tier Game-Theoretic Approach for Computation Offloading in Multi-Access Edge Computing
    You, Feiran
    Ni, Wei
    Li, Jun
    Jamalipour, Abbas
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9817 - 9829
  • [3] Cost-Minimized Computation Offloading of Online Multifunction Services in Collaborative Edge-Cloud Networks
    Feng, Chuan
    Han, Pengchao
    Zhang, Xu
    Zhang, Qihan
    Zong, Yue
    Liu, Yejun
    Guo, Lei
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (01): : 292 - 304
  • [4] Computation Offloading in LEO Satellite Networks With Hybrid Cloud and Edge Computing
    Tang, Qingqing
    Fei, Zesong
    Li, Bin
    Han, Zhu
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 9164 - 9176
  • [5] Stackelberg-Game-Based Computation Offloading Method in Cloud-Edge Computing Networks
    Zhou, Huan
    Wang, Zhenning
    Cheng, Nan
    Zeng, Deze
    Fan, Pingzhi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 16510 - 16520
  • [6] Partial Computation Offloading in Parked Vehicle-Assisted Multi-Access Edge Computing: A Game-Theoretic Approach
    Pham, Xuan-Qui
    Huynh-The, Thien
    Huh, Eui-Nam
    Kim, Dong-Seong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 10220 - 10225
  • [7] Online Computation Offloading and Traffic Routing for UAV Swarms in Edge-Cloud Computing
    Liu, Baichuan
    Zhang, Weikun
    Chen, Wuhui
    Huang, Huawei
    Guo, Song
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 8777 - 8791
  • [8] HIQCO: A Hierarchical Optimization Method for Computation Offloading and Resource Optimization in Multi-Cell Mobile-Edge Computing Systems
    Li, Zhiyong
    Du, Chen
    Chen, Shaomiao
    IEEE ACCESS, 2020, 8 : 45951 - 45963
  • [9] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322
  • [10] Edge-Cloud Collaborative Computation Offloading for Mixed Traffic
    Li, Qirui
    Guo, Mian
    Peng, Zhiping
    Cui, Delong
    He, Jieguang
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 5023 - 5034