Prediction of Global Horizontal Irradiance Using an Explainable Data Driven Machine Learning Algorithms

被引:6
|
作者
Gupta, Rahul [1 ]
Yadav, Anil Kumar [2 ]
Jha, Shyama Kant [3 ]
机构
[1] Netaji Subhas Univ Technol, Dept Elect Engn, New Delhi, India
[2] Dr BR Ambedkar Natl Inst Technol Jalandhar, Dept Instrumentat & Control Engn, Jalandhar, Punjab, India
[3] Netaji Subhas Univ Technol, Dept Instrumentat & Control Engn, New Delhi, India
关键词
global horizontal irradiance; extra trees regressor; shapely additive explanation; variance inflation factor; estimation; SOLAR-RADIATION; RANDOM FOREST; REGRESSION; NETWORK; ERROR; MODEL;
D O I
10.1080/15325008.2024.2310771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Estimating global horizontal irradiance (GHI) with a high level of accuracy and precision is very challenging due to the volatile climate parameters and location constraints. To overcome this challenge, several machine learning (ML)-based techniques such as Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosting (XGB), and Extra Trees (ET) are implemented to forecast the GHI. The first stage of model development is to select the optimal subset of features by using the variance inflation factor feature selection method. In the second stage, the selected features are fed into the ML models and trained. The predictive performance of the ML models is improved the result of removal of insignificant input features. The predictive accuracy of the ML models is compared and evaluated by performance metrics such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Conclusively, after feature selection it is seen that the ET algorithm outperforms the others because of its lowest MAE and RMSE value of 3.01 and 1.748, respectively, as compared to the other models, indicating its relevancy, legitimacy, and viability for the estimation of GHI. The higher R2 value of 0.99 obtained by the ET model indicates that it is best fitted with the dataset. Additionally, optimal shapely additive explanation values have been used as feature attributions for determining the magnitude and direction of the impact of each feature on the outcome.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison
    Agbulut, Umit
    Gurel, Ali Etem
    Bicen, Yunus
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 135
  • [42] A Comparative Study of Machine Learning Algorithms for Financial Data Prediction
    Omar, Bencharef
    Zineb, Bousbaa
    Jofre Aida, Cortes
    Cortes Daniel, Gonzalez
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2018,
  • [43] Harnessing the power of hybrid deep learning algorithm for the estimation of global horizontal irradiance
    Gupta, Rahul
    Yadav, Anil Kumar
    Jha, S. K.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 943
  • [44] Short-Term Solar Irradiance Prediction Based on Adaptive Extreme Learning Machine and Weather Data
    Alzahrani, Ahmad
    SENSORS, 2022, 22 (21)
  • [45] Data Driven Energy Economy Prediction for Electric City Buses Using Machine Learning
    Sennefelder, Roman Michael
    Martin-Clemente, Ruben
    Gonzalez-Carvajal, Ramon
    Trifonov, Dimitar
    IEEE ACCESS, 2023, 11 : 97057 - 97071
  • [46] Analysis on intelligent machine learning enabled with meta-heuristic algorithms for solar irradiance prediction
    Vaisakh, T.
    Jayabarathi, R.
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (01) : 235 - 254
  • [47] Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques
    Salamalikis, Vasileios
    Tzoumanikas, Panayiotis
    Argiriou, Athanassios A.
    Kazantzidis, Andreas
    RENEWABLE ENERGY, 2022, 195 : 92 - 106
  • [48] Towards Explainable Machine Learning for Bank Churn Prediction Using Data Balancing and Ensemble-Based Methods
    Tekouabou, Stephane C. K.
    Gherghina, Stefan Cristian
    Toulni, Hamza
    Mata, Pedro Neves
    Martins, Jose Moleiro
    MATHEMATICS, 2022, 10 (14)
  • [49] Prediction of Thermogravimetric Data in the Thermal Recycling of e-waste Using Machine Learning Techniques: A Data-driven Approach
    Ali, Labeeb
    Sivaramakrishnan, Kaushik
    Kuttiyathil, Mohamed Shafi
    Chandrasekaran, Vignesh
    Ahmed, Oday H.
    Al-Harahsheh, Mohammad
    Altarawneh, Mohammednoor
    ACS OMEGA, 2023, 8 (45): : 43254 - 43270
  • [50] Prediction and Feature Importance of Earth Pressure in Shields Using Machine Learning Algorithms
    Huang, Hongyu
    Liu, Lipeng
    Cao, Ruilang
    Cao, Yuxin
    KSCE JOURNAL OF CIVIL ENGINEERING, 2023, 27 (02) : 862 - 877