DTIN: Dual Transformer-based Imputation Nets for multivariate time series emitter missing data

被引:5
|
作者
Sun, Ziyue [1 ]
Li, Haozhe [1 ]
Wang, Wenhai [1 ]
Liu, Jiaqi [2 ]
Liu, Xinggao [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
[2] China Acad, Launch Vehicle Technol, Beijing 100000, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Multivariate time series; Missing data imputation; Dual channel; Transformer; Pivotal tuning inversion; VALUES; REGRESSION;
D O I
10.1016/j.knosys.2023.111270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a kind of multivariate time series (MTS) data, emitter signals often exhibit missing or corrupt values, posing serious challenges to emitter data research such as specific emitter identification (SEI). Existing multivariate missing data imputation (MDI) methods are deficient in two aspects when applied to MTS emitter data: first, single-channel models cannot handle variables with varying numbers of complete samples; second, they cannot efficiently impute MTS data that are out of the model's domain. To address these issues, a dual channel architecture tailored for MTS emitter data was devised in this study, which is called Dual Transformer based Imputation Nets (DTIN). DTIN processes different types of variables through two parallel channels to extract different spatiotemporal features. Furthermore, drawing inspiration from image style manipulation, multivariate time series pivotal tuning inversion (MTSPTI) techniques are employed for better imputation performance, in which an in-domain pivotal code is created and input into the generator that is tuned for out-of-domain MTS emitter data. Extensive experiments on two real-world emitter datasets demonstrate that DTIN outperforms several existing MDI models.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Method of missing data imputation for multivariate time series
    Li Z.
    Zhang F.
    Wang Y.
    Tao Q.
    Li C.
    2018, Chinese Institute of Electronics (40): : 225 - 230
  • [2] Combining Convolution and Transformer for Missing Time Series Data Imputation
    Wang, Yi-Fan
    Bu, Shuai-Yu
    Yan, Jing-Hua
    Hou, Zhi-Wen
    Bu, Ling-Bin
    Meng, Fan-Xu
    Journal of Network Intelligence, 2023, 8 (03): : 823 - 838
  • [3] Heterogeneous multivariate time series imputation by transformer model with missing position encoding
    Liu, Caizheng
    Zhu, Zhengyu
    Hao, Wanming
    Sun, Gangcan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 271
  • [4] TIformer: A Transformer-Based Framework for Time-Series Forecasting with Missing Data
    Ding, Zuocheng
    Chen, Yufan
    Wang, Hanchen
    Wang, Xiaoyang
    Zhang, Wenjie
    Zhang, Ying
    DATABASES THEORY AND APPLICATIONS, ADC 2024, 2025, 15449 : 71 - 84
  • [5] Data Imputation for Multivariate Time Series Sensor Data With Large Gaps of Missing Data
    Wu, Rui
    Hamshaw, Scott D.
    Yang, Lei
    Kincaid, Dustin W.
    Etheridge, Randall
    Ghasemkhani, Amir
    IEEE SENSORS JOURNAL, 2022, 22 (11) : 10671 - 10683
  • [6] A Transformer-based Framework for Multivariate Time Series Representation Learning
    Zerveas, George
    Jayaraman, Srideepika
    Patel, Dhaval
    Bhamidipaty, Anuradha
    Eickhoff, Carsten
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2114 - 2124
  • [7] Adversarial Transformer-Based Anomaly Detection for Multivariate Time Series
    Yu, Xinying
    Zhang, Kejun
    Liu, Yaqi
    Zou, Bing
    Wang, Jun
    Wang, Wenbin
    Qian, Rong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2471 - 2480
  • [8] A hierarchical transformer-based network for multivariate time series classification
    Tang, Yingxia
    Wei, Yanxuan
    Li, Teng
    Zheng, Xiangwei
    Ji, Cun
    INFORMATION SYSTEMS, 2025, 132
  • [9] Multivariate time series anomaly detection via separation, decomposition, and dual transformer-based autoencoder
    Fu, Shiyuan
    Gao, Xin
    Li, Baofeng
    Zhai, Feng
    Lu, Jiansheng
    Xue, Bing
    Yu, Jiahao
    Xiao, Chun
    APPLIED SOFT COMPUTING, 2024, 159
  • [10] Missing data imputation in a transformer district based on time series imagingencoding and a generative adversarial network
    Liu K.
    Zhou F.
    Zhou H.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (24): : 129 - 136