A Fair and Efficient Federated Learning Algorithm for Autonomous Driving

被引:2
|
作者
Tang, Xinlong [1 ,2 ]
Zhang, Jiayi [1 ,2 ]
Fu, Yuchuan [1 ,2 ]
Li, Changle [1 ,2 ]
Cheng, Nan [1 ,2 ]
Yuan, Xiaoming [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Res Inst Smart Transportat, Xian 710071, Shaanxi, Peoples R China
[3] Northeastern Univ, Qinhuangdao Branch Campus, Qinhuangdao 066004, Hebei, Peoples R China
来源
2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL | 2023年
基金
中国国家自然科学基金;
关键词
Autonomous driving; federated learning; energy effective;
D O I
10.1109/VTC2023-Fall60731.2023.10333605
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the dispersed and privacy-preserving features, federated learning (FL) enables connected and autonomous vehicles (CAVs) to achieve cooperative perception, decision-making, and planning by utilizing the learning capabilities and sharing model parameters. However, the discrepancies in local training cost and model upload durations between various CAVs make the energy and time costs caused by traditional FL algorithms unfair. In this paper, a fair and efficient FL algorithm is proposed with to address the challenges arising from imbalanced data distribution and fluctuating channel conditions. Specifically, to achieve uniformity in total time and energy cost among CAVs, a personalized approach is employed for the local training rounds of each CAV. This approach ensures fairness and training effectiveness while reducing the local training time in each round of global iteration. Furthermore, it enhances the convergence speed of the global model. Extensive simulations demonstrate that the proposed algorithm achieves fairness in energy cost while reducing the duration of each round of global iteration.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] An Efficient Multi-Model Training Algorithm for Federated Learning
    Li, Cong
    Li, Chunxi
    Zhao, Yongxiang
    Zhang, Baoxian
    Li, Cheng
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [32] Federated Learning for Energy-efficient Cooperative Perception in Connected and Autonomous Vehicles
    Sullivan, Bo
    Svendsen, Synnove
    Khan, Junaid Ahmed
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [33] FedMG: A Federated Multi-Global Optimization Framework for Autonomous Driving Control
    Ma, Jialiang
    Tian, Chunlin
    Li, Li
    Xu, Chengzhong
    2024 IEEE/ACM 32ND INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE, IWQOS, 2024,
  • [34] RIFL: A Fair Incentive Mechanism for Federated Learning
    Tang, Huanrong
    Liao, Xinghai
    Ouyang, Jianquan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 365 - 377
  • [35] Heterogeneity-aware fair federated learning
    Li, Xiaoli
    Zhao, Siran
    Chen, Chuan
    Zheng, Zibin
    INFORMATION SCIENCES, 2023, 619 : 968 - 986
  • [36] A DYNAMIC REWEIGHTING STRATEGY FOR FAIR FEDERATED LEARNING
    Zhao, Zhiyuan
    Joshi, Gauri
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8772 - 8776
  • [37] Fair Detection of Poisoning Attacks in Federated Learning
    Singh, Ashneet Khandpur
    Blanco-Justicia, Alberto
    Domingo-Ferrer, Josep
    Sanchez, David
    Rebollo-Monedero, David
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 224 - 229
  • [38] FIFL: A Fair Incentive Mechanism for Federated Learning
    Gao, Liang
    Li, Li
    Chen, Yingwen
    Zheng, Wenli
    Xu, ChengZhong
    Xu, Ming
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,
  • [39] Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving
    Yang, Rui
    Yan, Zhi
    Yang, Tao
    Wang, Yaonan
    Ruichek, Yassine
    IEEE SENSORS JOURNAL, 2023, 23 (19) : 23522 - 23535
  • [40] Unified fair federated learning for digital healthcare
    Zhang, Fengda
    Shuai, Zitao
    Kuang, Kun
    Wu, Fei
    Zhuang, Yueting
    Xiao, Jun
    PATTERNS, 2024, 5 (01):