Electrochemical Measurement of Water Transport Numbers in Anion-Exchange Membranes

被引:4
作者
Petrovick, John G. [1 ,2 ]
Kushner, Douglas I. [2 ]
Goyal, Priyamvada [2 ]
Kusoglu, Ahmet [2 ]
Radke, Clayton J. [1 ]
Weber, Adam Z. [2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA USA
[2] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
关键词
fuel cells - PEM; electroanalytical electrochemistry; electrochemical engineering; fuel cells; membranes and separators; ELECTROOSMOTIC DRAG COEFFICIENT; POLYMER-ELECTROLYTE MEMBRANES; FUEL-CELLS; ELECTRICAL-CONDUCTIVITY; MODELING TRANSPORT; NAFION MEMBRANE; SULFONIC-ACID; HYDROXYL IONS; PROTON; SOLVATION;
D O I
10.1149/1945-7111/ad09f9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Anion-exchange membranes (AEMs) are a possible replacement for perfluorosulfonic-acid membranes in energy-conversion devices, primarily due to the hydroxide mobile ion allowing the devices to operate in alkaline conditions with less expensive electrocatalysts. However, the transport properties of AEMs remain understudied, especially electro-osmosis. In this work, an electrochemical technique, where the open-circuit voltage is measured between two ends of a membrane maintained at different relative humidities, is used to determine the water transport number of various ionomers, including Versogen and Sustainion AEMs and Nafion cation-exchange membrane (CEM), as a function of water content and temperature. In addition, the CEMs and AEMs are examined in differing single-ion forms, specifically proton and sodium (CEM) and hydroxide and carbonate (AEM). Carbonate-form AEMs have the highest transport number (similar to 11), followed by sodium-form CEMs (similar to 8), hydroxide-form AEMs (similar to 6), and proton-form CEMs (similar to 3). Finally, a multicomponent transport model based on the Stefan-Maxwell-Onsager framework of binary interactions is used to develop a link between water transport number and water-transport properties, extracting a range for the unmeasured membrane water permeability of Versogen as a function of water content.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Measurements of water uptake and transport properties in anion-exchange membranes
    Li, Y. S.
    Zhao, T. S.
    Yang, W. W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) : 5656 - 5665
  • [2] Water transport in anion and proton exchange membranes
    Wei, Fei
    Kosakian, Aslan
    Liu, Jiafei
    Kracher, James
    Khan, Rafid
    Secanell, Marc
    JOURNAL OF POWER SOURCES, 2023, 557
  • [3] Anion-exchange membranes in electrochemical energy systems
    Varcoe, John R.
    Atanassov, Plamen
    Dekel, Dario R.
    Herring, Andrew M.
    Hickner, Michael A.
    Kohl, Paul. A.
    Kucernak, Anthony R.
    Mustain, William E.
    Nijmeijer, Kitty
    Scott, Keith
    Xu, Tongwen
    Zhuang, Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (10) : 3135 - 3191
  • [4] Water Diffusion, Drag and Absorption in an Anion-Exchange Membrane Fuel Cell
    Grimler, Henrik
    Nikolic, Nikola
    Ekstrom, Henrik
    Lagergren, Carina
    Lindstrom, Rakel Wreland
    Lindbergh, Goran
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (02)
  • [5] Alkaline Stability of Anion-Exchange Membranes
    Willdorf-Cohen, Sapir
    Zhegur-Khais, Avital
    Ponce-Gonzalez, Julia
    Bsoul-Haj, Saja
    Varcoe, John R.
    Diesendruck, Charles E.
    Dekel, Dario R.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (02) : 1085 - 1092
  • [6] Chain Architecture Dependence of Morphology and Water Transport in Poly(fluorene alkylene)-Based Anion-Exchange Membranes
    Li, Xiaofeng
    Yang, Kuan
    Wang, Zimo
    Chen, Yaohan
    Li, Yonggang
    Guo, Jing
    Zheng, Jifu
    Li, Shenghai
    Zhang, Suobo
    MACROMOLECULES, 2022, 55 (23) : 10607 - 10617
  • [7] Measuring the alkaline stability of anion-exchange membranes
    Haj-Bsoul, Saja
    Varcoe, John R.
    Dekel, Dario R.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 908
  • [8] Anion-Exchange Membrane Water Electrolyzers
    Du, Naiying
    Roy, Claudie
    Peach, Retha
    Turnbull, Matthew
    Thiele, Simon
    Bock, Christina
    CHEMICAL REVIEWS, 2022, 122 (13) : 11830 - 11895
  • [9] Effects of anion substitution on hydration, ionic conductivity and mechanical properties of anion-exchange membranes
    Pasquini, L.
    Di Vona, M. L.
    Knauth, P.
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (04) : 3671 - 3676
  • [10] Prospects for Anion-Exchange Membranes in Alkali Metal-Air Batteries
    Tsehaye, Misgina Tilahun
    Alloin, Fannie
    Iojoiu, Cristina
    ENERGIES, 2019, 12 (24)