Impact of a Deep Learning-based Super-resolution Image Reconstruction Technique on High-contrast Computed Tomography: A Phantom Study

被引:11
作者
Sato, Hideyuki [1 ]
Fujimoto, Shinichiro [2 ]
Tomizawa, Nobuo [3 ]
Inage, Hidekazu [1 ]
Yokota, Takuya [1 ]
Kudo, Hikaru [1 ]
Fan, Ruiheng [1 ]
Kawamoto, Keiichi [1 ]
Honda, Yuri [1 ]
Kobayashi, Takayuki [4 ]
Minamino, Tohru [2 ]
Kogure, Yosuke [1 ]
机构
[1] Juntendo Univ Hosp, Dept Radiol Technol, Tokyo, Japan
[2] Juntendo Univ, Grad Sch Med, Dept Cardiovasc Biol & Med, Tokyo, Japan
[3] Juntendo Univ, Grad Sch Med, Dept Radiol, Tokyo, Japan
[4] Kitasato Univ, Kitasato Inst Hosp, Dept Radiol Technol, Tokyo, Japan
关键词
iterative reconstruction; deep-learning-based super-resolution image reconstruction; noise power spectrum; task transfer function; detectability index; STATISTICAL ITERATIVE RECONSTRUCTION; FILTERED BACK-PROJECTION; CORONARY CT ANGIOGRAPHY; DIAGNOSTIC PERFORMANCE; DOSE REDUCTION; MODEL; QUALITY;
D O I
10.1016/j.acra.2022.12.040
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and ObjectivesDeep-learning-based super-resolution image reconstruction (DLSRR) is a novel image reconstruction technique that is expected to contribute to improvement in spatial resolution as well as noise reduction through learning from high-resolution computed tomography (CT). This study aims to evaluate image quality obtained with DLSRR and assess its clinical potential.Materials and MethodsCT images of a Mercury CT 4.0 phantom were obtained using a 320-row multi-detector scanner at tube currents of 100, 200, and 300 mA. Image data were reconstructed by filtered back projection (FBP), hybrid iterative reconstruction (HIR), model-based iterative reconstruction (MBIR), deep-learning-based image reconstruction (DLR), and DLSRR at image reconstruction strength levels of mild, standard, and strong. Noise power spectrum (NPS), task transfer function (TTF), and detectability index were calculated.ResultsThe magnitude of the noise-reducing effect in comparison with FBP was in the order MBIRConclusionThe present results suggest that DLSRR can achieve greater noise reduction and improved spatial resolution in the high-contrast region compared with conventional DLR and iterative reconstruction techniques.
引用
收藏
页码:2657 / 2665
页数:9
相关论文
共 21 条
[1]   Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT [J].
Akagi, Motonori ;
Nakamura, Yuko ;
Higaki, Toru ;
Narita, Keigo ;
Honda, Yukiko ;
Zhou, Jian ;
Yu, Zhou ;
Akino, Naruomi ;
Awai, Kazuo .
EUROPEAN RADIOLOGY, 2019, 29 (11) :6163-6171
[2]   Iterative reconstruction methods in X-ray CT [J].
Beister, Marcel ;
Kolditz, Daniel ;
Kalender, Willi A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2012, 28 (02) :94-108
[3]   Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography [J].
Benz, Dominik C. ;
Ersoezlue, Sara ;
Mojon, Francois L. A. ;
Messerli, Michael ;
Mitulla, Anna K. ;
Ciancone, Domenico ;
Kenkel, David ;
Schaab, Jan A. ;
Gebhard, Catherine ;
Pazhenkottil, Aju P. ;
Kaufmann, Philipp A. ;
Buechel, Ronny R. .
EUROPEAN RADIOLOGY, 2022, 32 (04) :2620-2628
[4]   Filtered Back Projection, Adaptive Statistical Iterative Reconstruction, and a Model-based Iterative Reconstruction in Abdominal CT: An Experimental Clinical Study [J].
Deak, Zsuzsanna ;
Grimm, Jochen M. ;
Treitl, Marcus ;
Geyer, Lucas L. ;
Linsenmaier, Ulrich ;
Koerner, Markus ;
Reiser, Maximilian F. ;
Wirth, Stefan .
RADIOLOGY, 2013, 266 (01) :197-206
[5]   Incremental prognostic value of coronary computed tomographic angiography high-risk plaque characteristics in newly symptomatic patients [J].
Fujimoto, Shinichiro ;
Kondo, Takeshi ;
Takamura, Kazuhisa ;
Baber, Usman ;
Shinozaki, Tomohiro ;
Nishizaki, Yuji ;
Kawaguchi, Yuko ;
Matsumori, Rie ;
Hiki, Makoto ;
Miyauchi, Katsumi ;
Daida, Hiroyuki ;
Hecht, Harvey ;
Stone, Gregg W. ;
Narula, Jagat .
JOURNAL OF CARDIOLOGY, 2016, 67 (5-6) :538-544
[6]   State of the Art: Iterative CT Reconstruction Techniques [J].
Geyer, Lucas L. ;
Schoepf, U. Joseph ;
Meinel, Felix G. ;
Nance, John W., Jr. ;
Bastarrika, Gorka ;
Leipsic, Jonathon A. ;
Paul, Narinder S. ;
Rengo, Marco ;
Laghi, Andrea ;
De Cecco, Carlo N. .
RADIOLOGY, 2015, 276 (02) :338-356
[7]   Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms Results From the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) Study [J].
Koo, Bon-Kwon ;
Erglis, Andrejs ;
Doh, Joon-Hyung ;
Daniels, David V. ;
Jegere, Sanda ;
Kim, Hyo-Soo ;
Dunning, Allison ;
DeFrance, Tony ;
Lansky, Alexandra ;
Leipsic, Jonathan ;
Min, James K. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 58 (19) :1989-1997
[8]   Adaptive Statistical Iterative Reconstruction: Assessment of Image Noise and Image Quality in Coronary CT Angiography [J].
Leipsic, Jonathon ;
LaBounty, Troy M. ;
Heilbron, Brett ;
Min, James K. ;
Mancini, G. B. John ;
Lin, Fay Y. ;
Taylor, Carolyn ;
Dunning, Allison ;
Earls, James P. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 195 (03) :649-654
[9]   High-strength deep learning image reconstruction in coronary CT angiography at 70-kVp tube voltage significantly improves image quality and reduces both radiation and contrast doses [J].
Li, Wanjiang ;
Diao, Kaiyue ;
Wen, Yuting ;
Shuai, Tao ;
You, Yongchun ;
Zhao, Jin ;
Liao, Kai ;
Lu, Chunyan ;
Yu, Jianqun ;
He, Yong ;
Li, Zhenlin .
EUROPEAN RADIOLOGY, 2022, 32 (05) :2912-2920
[10]   The feasibility of Forward-projected model-based Iterative Reconstruction SoluTion (FIRST) for coronary 320-row computed tomography angiography: A pilot study [J].
Maeda, Eriko ;
Tomizawa, Nobuo ;
Kanno, Shigeaki ;
Yasaka, Koichiro ;
Kubo, Takatoshi ;
Ino, Kenji ;
Torigoe, Rumiko ;
Ohtomo, Kuni .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2017, 11 (01) :40-45