Road Scene Instance Segmentation Based on Improved SOLOv2

被引:4
|
作者
Yang, Qing [1 ]
Peng, Jiansheng [1 ,2 ]
Chen, Dunhua [1 ]
Zhang, Hongyu [1 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 547000, Peoples R China
基金
中国国家自然科学基金;
关键词
instance segmentation; road scene; SOLOv2; VoVNetV2; FPN;
D O I
10.3390/electronics12194169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Road instance segmentation is vital for autonomous driving, yet the current algorithms struggle in complex city environments, with issues like poor small object segmentation, low-quality mask edge contours, slow processing, and limited model adaptability. This paper introduces an enhanced instance segmentation method based on SOLOv2. It integrates the Bottleneck Transformer (BoT) module into VoVNetV2, replacing the standard convolutions with ghost convolutions. Additionally, it replaces ResNet with an improved VoVNetV2 backbone to enhance the feature extraction and segmentation speed. Furthermore, the algorithm employs Feature Pyramid Grids (FPGs) instead of Feature Pyramid Networks (FPNs) to introduce multi-directional lateral connections for better feature fusion. Lastly, it incorporates a convolutional Block Attention Module (CBAM) into the detection head for refined features by considering the attention weight coefficients in both the channel and spatial dimensions. The experimental results demonstrate the algorithm's effectiveness, achieving a 27.6% mAP on Cityscapes, a 4.2% improvement over SOLOv2. It also attains a segmentation speed of 8.9 FPS, a 1.7 FPS increase over SOLOv2, confirming its practicality for real-world engineering applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] 基于改进SOLOv2算法的海滩影像水边线提取研究
    庞坤
    朱君
    王楠
    孔腾飞
    戚洪帅
    雷刚
    尹航
    刘根
    海洋环境科学, 2025, 44 (01) : 145 - 151
  • [42] CG-SOLOv2: Enhanced instance segmentation for coal-gangue with novel feature extraction and fusion modules
    Zhang, Kefei
    Wang, Teng
    Xu, Liang
    Yang, Lei
    The, Jesse
    Yu, Hesheng
    POWDER TECHNOLOGY, 2025, 452
  • [43] IDS-MODEL: An Efficient Multitask Model of Road Scene Instance and Drivable Area Segmentation for Autonomous Driving
    Luo, Tong
    Chen, Yanyan
    Luan, Tianyu
    Cai, Baixiang
    Chen, Long
    Wang, Hai
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 1454 - 1464
  • [44] 改进SOLOv2的非结构化道路图像实例分割
    宋亮
    谷玉海
    黄佳伟
    激光杂志, 2024, 45 (03) : 133 - 139
  • [45] 基于改进SOLOv2的家蚕图像实例分割的应用与研究
    叶贵
    朱珍元
    淮南师范学院学报, 2024, 26 (05) : 144 - 148
  • [46] Improved instance segmentation for slender urban road facility extraction using oblique aerial images
    Mao, Zhu
    Huang, Xianfeng
    Niu, Wenyuan
    Wang, Xuan
    Hou, Zepeng
    Zhang, Fan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 121
  • [47] Normal region segmentation of road scene based on spatial context algorithm
    Chen X.-Y.
    Yao Q.
    Ding Q.-C.
    Bei X.-Y.
    Huang X.-Q.
    Jin X.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (11): : 2013 - 2021
  • [48] Recognition of unstructured field road scene based on semantic segmentation model
    Meng Q.
    Yang X.
    Zhang M.
    Guan H.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (22): : 152 - 160
  • [49] Ship target instance segmentation algorithm based on improved Swin Transformer
    Qian K.
    Li C.
    Chen M.
    Guo J.
    Pan L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (10): : 3049 - 3057
  • [50] An Instance Segmentation Algorithm Based on Improved Mask R-CNN
    Yang, Qijuan
    Dong, Enzeng
    Zhu, Lin
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4804 - 4809