Road Scene Instance Segmentation Based on Improved SOLOv2

被引:4
|
作者
Yang, Qing [1 ]
Peng, Jiansheng [1 ,2 ]
Chen, Dunhua [1 ]
Zhang, Hongyu [1 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 547000, Peoples R China
基金
中国国家自然科学基金;
关键词
instance segmentation; road scene; SOLOv2; VoVNetV2; FPN;
D O I
10.3390/electronics12194169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Road instance segmentation is vital for autonomous driving, yet the current algorithms struggle in complex city environments, with issues like poor small object segmentation, low-quality mask edge contours, slow processing, and limited model adaptability. This paper introduces an enhanced instance segmentation method based on SOLOv2. It integrates the Bottleneck Transformer (BoT) module into VoVNetV2, replacing the standard convolutions with ghost convolutions. Additionally, it replaces ResNet with an improved VoVNetV2 backbone to enhance the feature extraction and segmentation speed. Furthermore, the algorithm employs Feature Pyramid Grids (FPGs) instead of Feature Pyramid Networks (FPNs) to introduce multi-directional lateral connections for better feature fusion. Lastly, it incorporates a convolutional Block Attention Module (CBAM) into the detection head for refined features by considering the attention weight coefficients in both the channel and spatial dimensions. The experimental results demonstrate the algorithm's effectiveness, achieving a 27.6% mAP on Cityscapes, a 4.2% improvement over SOLOv2. It also attains a segmentation speed of 8.9 FPS, a 1.7 FPS increase over SOLOv2, confirming its practicality for real-world engineering applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] 基于SOLOv2的桥梁裂缝实时分割算法
    刘晓雨
    张继凯
    吕晓琪
    内蒙古科技大学学报, 2023, (04) : 387 - 393
  • [22] 基于改进SOLOv2的煤矿图像实例分割方法
    季亮
    工矿自动化, 2023, 49 (11) : 115 - 120
  • [23] 基于改进SOLOv2的转炉炼钢钢液检测
    吴逢斌
    曹国
    时昊
    计算机应用, 2022, 42(S1) (S1) : 321 - 326
  • [24] A Semantic Segmentation Method for Road Scene Images Based on Improved DeeplabV3+ Network
    Bi, Lihua
    Zhang, Xiangfei
    Li, Shihao
    Li, Canlin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (08) : 841 - 849
  • [25] 基于改进SOLOv2的穴盘幼苗图像分割方法
    庄前伟
    王志明
    吴龙贻
    李恺
    王春辉
    南京农业大学学报, 2023, 46 (01) : 200 - 209
  • [26] Road Scene Image Segmentation Based on Feature Fusion
    Shakeri, Abbas
    Moshiri, Behzad
    Koohi, Mahdi
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 1293 - 1298
  • [27] Scene Text Detection with Recurrent Instance Segmentation
    Feng, Wei
    He, Wen-Hao
    Yin, Fei
    Liu, Cheng-Lin
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2227 - 2232
  • [28] 基于改进SOLOv2的金丝球焊焊点检测方法
    谢智宇
    唐立新
    肖宇
    冯时
    谭耀昌
    现代制造工程, 2023, (01) : 110 - 115
  • [29] Automatic rumen filling scoring method for dairy cows based on SOLOv2 and cavity feature of point cloud
    Ji J.
    Liu X.
    Zhao K.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (04): : 186 - 197
  • [30] Augmenting progress monitoring in soil-foundation construction utilizing SOLOv2-based instance segmentation and visual BIM representation
    Wei, Wei
    Lu, Yujie
    Lin, Yijun
    Bai, Ruihan
    Zhang, Yichong
    Wang, Haisong
    Li, Peixian
    AUTOMATION IN CONSTRUCTION, 2023, 155