A projection method for general form linear least-squares problems

被引:1
作者
Pes, Federica [1 ]
Rodriguez, Giuseppe [2 ]
机构
[1] Univ Pisa, Dept Chem & Ind Chem, I-56124 Pisa, Italy
[2] Univ Cagliari, Dept Math & Comp Sci, I-09124 Cagliari, Italy
关键词
Inverse problem; Linear least-squares; Regularization operator; Projection method; GAUSS-NEWTON METHOD; TIKHONOV REGULARIZATION; L-CURVE; DISCRETE;
D O I
10.1016/j.aml.2023.108780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the possible approaches for the solution of underdetermined linear leastsquares problems in general form, for a chosen regularization operator L, projects the problem in the null space of L and in its orthogonal complement. In this paper, we show that the projected problem cannot be solved by the generalized singular value decomposition, and propose some approaches to overcome this issue. Numerical experiments ascertain the stability of the new procedures.& COPY; 2023 The Author(s). Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:7
相关论文
共 13 条
[1]   Decomposition methods for large linear discrete ill-posed problems [J].
Baglama, James ;
Reichel, Lothar .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (02) :332-343
[2]   Error estimates for linear systems with applications to regularization [J].
Brezinski, C. ;
Rodriguez, G. ;
Seatzu, S. .
NUMERICAL ALGORITHMS, 2008, 49 (1-4) :85-104
[3]   Error estimates for the regularization of least squares problems [J].
Brezinski, C. ;
Rodriguez, G. ;
Seatzu, S. .
NUMERICAL ALGORITHMS, 2009, 51 (01) :61-76
[4]  
Golub GH., 2013, Matrix Computations, DOI [10.56021/9781421407944, DOI 10.56021/9781421407944]
[5]   THE USE OF THE L-CURVE IN THE REGULARIZATION OF DISCRETE III-POSED PROBLEMS [J].
HANSEN, PC ;
OLEARY, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1487-1503
[6]   Regularization tools version 4.0 for matlab 7.3 [J].
Hansen, Per Christian .
NUMERICAL ALGORITHMS, 2007, 46 (02) :189-194
[7]   An adaptive pruning algorithm for the discrete L-curve criterion [J].
Hansen, Per Christian ;
Jensen, Toke Koldborg ;
Rodriguez, Giuseppe .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (02) :483-492
[8]   AN ITERATIVE METHOD FOR TIKHONOV REGULARIZATION WITH A GENERAL LINEAR REGULARIZATION OPERATOR [J].
Hochstenbach, Michiel E. ;
Reichel, Lothar .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2010, 22 (03) :465-482
[9]   A truncated projected SVD method for linear discrete ill-posed problems [J].
Morigi, Serena ;
Reichel, Lothar ;
Sgallari, Fiorella .
NUMERICAL ALGORITHMS, 2006, 43 (03) :197-213
[10]   Parameter determination for Tikhonov regularization problems in general form [J].
Park, Y. ;
Reichel, L. ;
Rodriguez, G. ;
Yu, X. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 :12-25