Genomic-wide identification and expression analysis of R2R3-MYB transcription factors related to flavonol biosynthesis in Morinda officinalis

被引:5
|
作者
Li, Jingyu [1 ,2 ]
Xu, Shiqiang [1 ,2 ]
Mei, Yu [1 ,2 ]
Gu, Yan [1 ,2 ]
Sun, Mingyang [1 ,2 ]
Zhang, Wenting [1 ,2 ]
Wang, Jihua [1 ,2 ]
机构
[1] Guangdong Acad Agr Sci, Crop Res Inst, Guangdong Prov Key Lab Crops Genet & Improvement, Guangzhou 510640, Peoples R China
[2] Guangdong Prov Engn & Technol Res Ctr Conservat &, Guangzhou 510640, Peoples R China
关键词
Morinda officinalis; Transcription factors; Flavonol biosynthesis; MYB; ACCUMULATION; GENES; METABOLISM; EVOLUTION; ACID; DUPLICATION; TANSHINONE; REGULATORS; SEQUENCE;
D O I
10.1186/s12870-023-04394-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundThe R2R3-MYB transcription factors are a crucial and extensive gene family in plants, which participate in diverse processes, including development, metabolism, defense, differentiation, and stress response. In the Lingnan region of China, Morinda officinalis is extensively grown and is renowned for its use as both a medicinal herb and food source. However, there are relatively few reports on the R2R3-MYB transcription factor family in M.officinalis.ResultsIn this study, we identified 97 R2R3-MYB genes in the genome of Morinda officinalis and classified them into 32 subgroups based on phylogenetic comparison with Arabidopsis thaliana. The lack of recent whole-genome duplication events in M.officinalis may be the reason for the relatively few members of the R2R3-MYB family. We also further analyzed the physical and chemical characteristics, conserved motifs, gene structure, and chromosomal location. Gene duplication events found 21 fragment duplication pairs and five tandem duplication event R2R3-MYB genes in M.officinalis may also affect gene family expansion. Based on phylogenetic analysis, cis-element analysis, co-expression analysis and RT-qPCR, we concluded that MoMYB33 might modulate flavonol levels by regulating the expression of 4-coumarate-CoA ligase Mo4CL2, chalcone isomerase MoCHI3, and flavonol synthase MoFLS4/11/12. MoMYB33 and AtMYB111 showed the highest similarity of 79% and may be involved in flavonol synthase networks by the STRING database. Moreover, we also identified MoMYB genes that respond to methyl Jasmonate (MeJA) and abscisic acid (ABA) stress by RT-qPCR.ConclusionsThis study offers a thorough comprehension of R2R3-MYB in M.officinalis, which lays the foundation for the regulation of flavonol synthesis and the response of MoMYB genes to phytohormones in M.officinalis.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Expansion and Diversification of the Populus R2R3-MYB Family of Transcription Factors
    Wilkins, Olivia
    Nahal, Hardeep
    Foong, Justin
    Provart, Nicholas J.
    Campbell, Malcolm M.
    PLANT PHYSIOLOGY, 2009, 149 (02) : 981 - 993
  • [42] The identification of an R2R3-MYB transcription factor involved in regulating anthocyanin biosynthesis in Primulina swinglei flowers
    Feng, Chen
    Ding, Dehui
    Feng, Chao
    Kang, Ming
    GENE, 2020, 752
  • [43] Novel Insights Into the Function of Arabidopsis R2R3-MYB Transcription Factors Regulating Aliphatic Glucosinolate Biosynthesis
    Li, Yimeng
    Sawada, Yuji
    Hirai, Akiko
    Sato, Muneo
    Kuwahara, Ayuko
    Yan, Xiufeng
    Hirai, Masami Yokota
    PLANT AND CELL PHYSIOLOGY, 2013, 54 (08) : 1335 - 1344
  • [44] Evolution and functional diversification of R2R3-MYB transcription factors in plants
    Wu, Yun
    Wen, Jing
    Xia, Yiping
    Zhang, Liangsheng
    Du, Hai
    HORTICULTURE RESEARCH, 2022, 9
  • [45] Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae
    Gates, Daniel J.
    Strickler, Susan R.
    Mueller, Lukas A.
    Olson, Bradley J. S. C.
    Smith, Stacey D.
    JOURNAL OF MOLECULAR EVOLUTION, 2016, 83 (1-2) : 26 - 37
  • [46] Genome-wide identification and expression analyses of R2R3-MYB transcription factor genes from two Orchid species
    Fan, Honghong
    Cui, Manli
    Li, Ninghong
    Li, Xujuan
    Liang, Yuxuan
    Liu, Lin
    Cai, Yongping
    Lin, Yi
    PEERJ, 2020, 8
  • [47] The R2R3-MYB transcription factor MYB44 modulates carotenoid biosynthesis in Ulva prolifera
    He, Yuan
    Li, Mengru
    Wang, Yehua
    Shen, Songdong
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2022, 62
  • [48] Genome-wide identification of R2R3-MYB transcription factors in Betula platyphylla and functional analysis of BpMYB95 in salt tolerance
    Zhang, Hongbo
    Yao, Tongtong
    Wang, Jiechen
    Ji, Guangxin
    Cui, Congcong
    Song, Jiaqi
    Sun, Nan
    Qi, Siyue
    Xu, Nan
    Zhang, Huiui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 279
  • [49] Genome-wide analysis of R2R3-MYB transcription factors family in the autopolyploid Saccharum spontaneum: an exploration of dominance expression and stress response
    Yuan, Yuan
    Yang, Xiping
    Feng, Mengfan
    Ding, Hongyan
    Khan, Muhammad Tahir
    Zhang, Jisen
    Zhang, Muqing
    BMC GENOMICS, 2021, 22 (01)
  • [50] Genome-wide identification and expression analysis of R2R3, 3R-and 4R-MYB transcription factors during lignin biosynthesis in flax (Linum usitatissimum)
    Tombuloglu, Huseyin
    GENOMICS, 2020, 112 (01) : 782 - 795