New Yamabe-type flow in a compact Riemannian manifold

被引:0
|
作者
Ma, Li [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Xueyuan Rd 30, Beijing 100083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 184卷
基金
中国国家自然科学基金;
关键词
Yamabe-type flow; Global existence; Norm-preserving flow; Scalar curvature; Asymptotic behavior; PRESCRIBING GAUSSIAN CURVATURE; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; CONVERGENCE;
D O I
10.1016/j.bulsci.2023.103244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we set up a new Yamabe type flow on a compact Riemannian manifold (M, g) of dimension n & GE; 3. Let & psi;(x) be any smooth function on M. Let p = n+2 n-2 and cn = 4(n-1) n-2 . We study the Yamabe-type flow u = u(t) satisfyingut = u1-p(cn & UDelta;u -& psi;(x)u) + r(t)u, in M x (0 , T) , T > 0withr(t) = M (cn| backward difference u|2 + & psi;(x)u2)dv/ M up+1 ,which preserves the Lp+1(M )-norm and we can show that for any initial metric u0 > 0, the flow exists globally. We also show that in some cases, the global solution converges to a smooth solution to the equationcn & UDelta;u - & psi;(x)u + r(& INFIN;)up = 0 , on M
引用
收藏
页数:19
相关论文
共 42 条
  • [31] Yamabe Flow on Non-compact Manifolds with Unbounded Initial Curvature
    Mario B. Schulz
    The Journal of Geometric Analysis, 2020, 30 : 4178 - 4192
  • [32] Discrete Morse Flow for Yamabe Type Heat Flows
    Ma, Li
    Zheng, Wei
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (01): : 48 - 57
  • [33] Yamabe Flow and Myers Type Theorem on Complete Manifolds
    Ma, Li
    Cheng, Liang
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 246 - 270
  • [34] Yamabe flow: Steady solitons and Type II singularities
    Choi, Beomjun
    Daskalopoulos, Panagiota
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 173 : 1 - 18
  • [35] Existence and Uniqueness for the Non-Compact Yamabe Problem of Negative Curvature Type
    Hogg, Joseph
    Nguyen, Luc
    ANALYSIS IN THEORY AND APPLICATIONS, 2024, 40 (01): : 57 - 91
  • [36] Boundary layers to a singularly perturbed Klein-Gordon-Maxwell-Proca system on a compact Riemannian manifold with boundary
    Clapp, Monica
    Ghimenti, Marco
    Micheletti, Anna Maria
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 559 - 582
  • [37] Riemannian Smoothing Gradient Type Algorithms for Nonsmooth Optimization Problem on Compact Riemannian Submanifold Embedded in Euclidean Space
    Peng, Zheng
    Wu, Weihe
    Hu, Jiang
    Deng, Kangkang
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (03)
  • [38] Weak and smooth solutions for a fractional Yamabe flow: The case of general compact and locally conformally flat manifolds
    Daskalopoulos, Panagiota
    Sire, Yannick
    Vazquez, Juan-Luis
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (09) : 1481 - 1496
  • [39] WEAKLY CONVEX OPTIMIZATION OVER STIEFEL MANIFOLD USING RIEMANNIAN SUBGRADIENT-TYPE METHODS
    Li, Xiao
    Chen, Shixiang
    Deng, Zengde
    Qu, Qing
    Zhu, Zhihui
    So, Anthony Man-Cho
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1605 - 1634
  • [40] The Gierer-Meinhardt system on a compact two-dimensional Riemannian manifold: Interaction of Gaussian curvature and Green's function
    Tse, Wang Hung
    Wei, Juncheng
    Winter, Matthias
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (04): : 366 - 397