New Yamabe-type flow in a compact Riemannian manifold

被引:0
|
作者
Ma, Li [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Xueyuan Rd 30, Beijing 100083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 184卷
基金
中国国家自然科学基金;
关键词
Yamabe-type flow; Global existence; Norm-preserving flow; Scalar curvature; Asymptotic behavior; PRESCRIBING GAUSSIAN CURVATURE; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; CONVERGENCE;
D O I
10.1016/j.bulsci.2023.103244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we set up a new Yamabe type flow on a compact Riemannian manifold (M, g) of dimension n & GE; 3. Let & psi;(x) be any smooth function on M. Let p = n+2 n-2 and cn = 4(n-1) n-2 . We study the Yamabe-type flow u = u(t) satisfyingut = u1-p(cn & UDelta;u -& psi;(x)u) + r(t)u, in M x (0 , T) , T > 0withr(t) = M (cn| backward difference u|2 + & psi;(x)u2)dv/ M up+1 ,which preserves the Lp+1(M )-norm and we can show that for any initial metric u0 > 0, the flow exists globally. We also show that in some cases, the global solution converges to a smooth solution to the equationcn & UDelta;u - & psi;(x)u + r(& INFIN;)up = 0 , on M
引用
收藏
页数:19
相关论文
共 42 条
  • [1] Gradient estimates and Harnack inequalities for Yamabe-type parabolic equations on Riemannian manifolds
    Ha Tuan Dung
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 60 : 39 - 48
  • [2] Yamabe type equations with sign-changing nonlinearities on non-compact Riemannian manifolds
    Bianchini, Bruno
    Mari, Luciano
    Rigoli, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (01) : 1 - 72
  • [3] Yamabe-Type Equations on Carnot Groups
    Bisci, Giovanni Molica
    Repovs, Dusan
    POTENTIAL ANALYSIS, 2017, 46 (02) : 369 - 383
  • [4] New type I ancient compact solutions of the Yamabe flow
    Daskalopoulos, Panagiota
    del Pino, Manuel
    King, John
    Sesum, Natasa
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (06) : 1667 - 1691
  • [5] Concentration on minimal submanifolds for a Yamabe-type problem
    Deng, Shengbing
    Musso, Monica
    Pistoia, Angela
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (09) : 1379 - 1425
  • [6] VARIATIONAL ANALYSIS FOR NONLOCAL YAMABE-TYPE SYSTEMS
    Xiang, Mingqi
    Bisci, Giovanni Molica
    Zhang, Binlin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 2069 - 2094
  • [7] MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION ON GRAPH
    Liu, Yang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (05) : 911 - 926
  • [8] Extending Yamabe flow on complete Riemannian manifolds
    Ma, Li
    Cheng, Liang
    Zhu, Anqiang
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (08): : 882 - 891
  • [9] Singular Yamabe-type problems with an asymptotically flat metric
    Bao, Jiguang
    Li, Yimei
    Wang, Kun
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (04) : 1351 - 1386
  • [10] A NOTE ON SOLUTIONS OF YAMABE-TYPE EQUATIONS ON PRODUCTS OF SPHERES
    Petean, Jimmy
    Barrantes Gonzalez, Hector
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 3143 - 3153