Spatio-temporal classification for polyp diagnosis

被引:0
作者
Puyal, Juana Gonzalez-Bueno [1 ,2 ]
Brandao, Patrick [2 ]
Ahmad, Omer F. [1 ]
Bhatia, Kanwal K. [2 ]
Toth, Daniel [2 ]
Kader, Rawen [1 ]
Lovat, Laurence [1 ]
Mountney, Peter [2 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Wellcome EPSRC, Ctr Intervent & Surg Sci WEISS, London W1W 7TY, England
[2] Odin Vis, London W1W 7TY, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
RECOGNITION; VALIDATION; SYSTEM;
D O I
10.1364/BOE.473446
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [31] Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware
    Behrenbeck, Jan
    Tayeb, Zied
    Bhiri, Cyrine
    Richter, Christoph
    Rhodes, Oliver
    Kasabov, Nikola
    Espinosa-Ramos, Josafath, I
    Furber, Steve
    Cheng, Gordon
    Conradt, Joerg
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (02)
  • [32] A Scale and Translation Invariant Approach for Early Classification of Spatio-Temporal Patterns Using Spiking Neural Networks
    Rekabdar, Banafsheh
    Nicolescu, Monica
    Nicolescu, Mircea
    Saffar, Mohammad Taghi
    Kelley, Richard
    NEURAL PROCESSING LETTERS, 2016, 43 (02) : 327 - 343
  • [33] Video Text Tracking With a Spatio-Temporal Complementary Model
    Gao, Yuzhe
    Li, Xing
    Zhang, Jiajian
    Zhou, Yu
    Jin, Dian
    Wang, Jing
    Zhu, Shenggao
    Bai, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9321 - 9331
  • [34] HOG and HOOF Spatio-Temporal Descriptors for Gesture Recognition
    Agab, Salah Eddine
    Chelali, Fatma Zohra
    2018 INTERNATIONAL CONFERENCE ON SIGNAL, IMAGE, VISION AND THEIR APPLICATIONS (SIVA), 2018,
  • [35] Exploring the spatio-temporal neural basis of face learning
    Yang, Ying
    Xu, Yang
    Jew, Carol A.
    Pyles, John A.
    Kass, Robert E.
    Tarr, Michael J.
    JOURNAL OF VISION, 2017, 17 (06):
  • [36] Joint Unsupervised Deformable Spatio-Temporal Alignment of Sequences
    Zafeiriou, Lazaros
    Antonakos, Epameinondas
    Zafeiriou, Stefanos
    Pantic, Maja
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3382 - 3390
  • [37] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [38] Spatio-temporal avalanche forecasting with Support Vector Machines
    Pozdnoukhov, A.
    Matasci, G.
    Kanevski, M.
    Purves, R. S.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (02) : 367 - 382
  • [39] Bilinear Models for Spatio-Temporal Point Distribution Analysis
    Hoogendoorn, Corne
    Sukno, Federico M.
    Ordas, Sebastian
    Frangi, Alejandro F.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 85 (03) : 237 - 252
  • [40] Neural Spatio-Temporal Beamformer for Target Speech Separation
    Xu, Yong
    Yu, Meng
    Zhang, Shi-Xiong
    Chen, Lianwu
    Weng, Chao
    Liu, Jianming
    Yu, Dong
    INTERSPEECH 2020, 2020, : 56 - 60