Spatio-temporal classification for polyp diagnosis

被引:1
作者
Puyal, Juana Gonzalez-Bueno [1 ,2 ]
Brandao, Patrick [2 ]
Ahmad, Omer F. [1 ]
Bhatia, Kanwal K. [2 ]
Toth, Daniel [2 ]
Kader, Rawen [1 ]
Lovat, Laurence [1 ]
Mountney, Peter [2 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Wellcome EPSRC, Ctr Intervent & Surg Sci WEISS, London W1W 7TY, England
[2] Odin Vis, London W1W 7TY, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
RECOGNITION; VALIDATION; SYSTEM;
D O I
10.1364/BOE.473446
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [21] Spatio-Temporal Trajectory Models For Target Tracking
    Fanaswala, Mustafa
    Krishnamurthy, Vikram
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [22] Spatio-Temporal Structure of Hooded Gull Flocks
    Yomosa, Makoto
    Mizuguchi, Tsuyoshi
    Hayakawa, Yoshinori
    PLOS ONE, 2013, 8 (12):
  • [23] Probabilistic spatio-temporal retrieval in smart spaces
    Menon, Vivek
    Jayaraman, Bharat
    Govindaraju, Venu
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2014, 5 (03) : 383 - 392
  • [24] Aligning Spatio-Temporal Signals on a Special Manifold
    Li, Ruonan
    Chellappa, Rama
    COMPUTER VISION-ECCV 2010, PT V, 2010, 6315 : 547 - 560
  • [25] A Novel Spatio-Temporal Violence Classification Framework Based on Material Derivative and LSTM Neural Network
    Lejmi, Wafa
    Ben Khalifa, Anouar
    Mahjoub, Mohamed Ali
    TRAITEMENT DU SIGNAL, 2020, 37 (05) : 687 - 701
  • [26] Contour Tracking with a Spatio-Temporal Intensity Moment
    Demi, Marcello
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (06) : 1141 - 1154
  • [27] Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware
    Behrenbeck, Jan
    Tayeb, Zied
    Bhiri, Cyrine
    Richter, Christoph
    Rhodes, Oliver
    Kasabov, Nikola
    Espinosa-Ramos, Josafath, I
    Furber, Steve
    Cheng, Gordon
    Conradt, Joerg
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (02)
  • [28] Probabilistic spatio-temporal retrieval in smart spaces
    Vivek Menon
    Bharat Jayaraman
    Venu Govindaraju
    Journal of Ambient Intelligence and Humanized Computing, 2014, 5 : 383 - 392
  • [29] A spatio-temporal pyramid matching for video retrieval
    Choi, Jaesik
    Wang, Ziyu
    Lee, Sang-Chul
    Jeon, Won J.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (06) : 660 - 669
  • [30] Thermal spatio-temporal data for stress recognition
    Sharma, Nandita
    Dhall, Abhinav
    Gedeon, Tom
    Goecke, Roland
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2014, : 1 - 12