Spatio-temporal classification for polyp diagnosis

被引:1
|
作者
Puyal, Juana Gonzalez-Bueno [1 ,2 ]
Brandao, Patrick [2 ]
Ahmad, Omer F. [1 ]
Bhatia, Kanwal K. [2 ]
Toth, Daniel [2 ]
Kader, Rawen [1 ]
Lovat, Laurence [1 ]
Mountney, Peter [2 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Wellcome EPSRC, Ctr Intervent & Surg Sci WEISS, London W1W 7TY, England
[2] Odin Vis, London W1W 7TY, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
RECOGNITION; VALIDATION; SYSTEM;
D O I
10.1364/BOE.473446
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [1] Spatio-Temporal Feature Transformation Based Polyp Recognition for Automatic Detection: Higher Accuracy than Novice Endoscopists in Colorectal Polyp Detection and Diagnosis
    Xu, Jianhua
    Kuai, Yaxian
    Chen, Qianqian
    Wang, Xu
    Zhao, Yihang
    Sun, Bin
    DIGESTIVE DISEASES AND SCIENCES, 2024, 69 (03) : 911 - 921
  • [2] Spatio-temporal Channel Correlation Networks for Action Classification
    Diba, Ali
    Fayyaz, Mohsen
    Sharma, Vivek
    Arzani, M. Mahdi
    Yousefzadeh, Rahman
    Gall, Juergen
    Van Gool, Luc
    COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 299 - 315
  • [3] Quantification and classification of locomotion patterns by spatio-temporal morphable models
    Giese, MA
    Poggio, T
    THIRD IEEE INTERNATIONAL WORKSHOP ON VISUAL SURVEILLANCE, PROCEEDINGS, 2000, : 27 - 34
  • [4] Spatio-Temporal Encoding Improves Neuromorphic Tactile Texture Classification
    Gupta, Anupam Kumar
    Nakagawa-Silva, Andrei
    Lepora, Nathan F.
    Thakor, Nitish V.
    IEEE SENSORS JOURNAL, 2021, 21 (17) : 19038 - 19046
  • [5] Spatio-temporal summarization of dance choreographies
    Rallis, Ioannis
    Doulamis, Nikolaos
    Doulamis, Anastasios
    Voulodimos, Athanasios
    Vescoukis, Vassilios
    COMPUTERS & GRAPHICS-UK, 2018, 73 : 88 - 101
  • [6] STEFF: Spatio-temporal EfficientNet for dynamic texture classification in outdoor scenes
    Mouhcine, Kaoutar
    Zrira, Nabila
    Elafi, Issam
    Benmiloud, Ibtissam
    Khan, Haris Ahmad
    HELIYON, 2024, 10 (03)
  • [7] SPATIO-TEMPORAL CO-OCCURRENCE CHARACTERIZATIONS FOR HUMAN ACTION CLASSIFICATION
    Sabri, Aznul Qalid Md
    Boonaert, Jacques
    Abdullah, Erma Rahayu Mohd Faizal
    Mansoor, Ali Mohammed
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2017, 30 (03) : 154 - 173
  • [8] Spatio-temporal convolution kernels
    Knauf, Konstantin
    Memmert, Daniel
    Brefeld, Ulf
    MACHINE LEARNING, 2016, 102 (02) : 247 - 273
  • [9] On spatio-temporal blockchain query processing
    Qu, Qiang
    Nurgaliev, Ildar
    Muzammal, Muhammad
    Jensen, Christian S.
    Fan, Jianping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 98 : 208 - 218
  • [10] Spatio-Temporal Good Features to Track
    Feichtenhofer, Christoph
    Pinz, Axel
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 246 - 253