Growth properties of solutions of linear difference equations with coefficients having co-order

被引:0
作者
Biswas, Nityagopal [1 ]
Sahoo, Pulak [2 ]
机构
[1] Chakdaha Coll, Dept Math, Chakdaha, Nadia 741222, West Bengal, India
[2] Midnapore Coll Autonomous, Dept Math, Midnapore, Paschim Medinipur 721101, West Bengal, India
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2023年 / 68卷 / 02期
关键词
Nevanlinna's theory; linear difference equation; meromorphic solution; (p-order; MEROMORPHIC SOLUTIONS;
D O I
10.24193/subbmath.2023.2.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the relations between the growth of entire coefficients and that of solutions of complex homogeneous and non-homogeneous linear difference equations with entire coefficients of (p-order by using a slow growth scale, the (p-order, where (p is a non-decreasing unbounded function. We extend some precedent results due to Zheng and Tu (2011) [15] and others.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 15 条
  • [1] Belaidi B., 2017, Bul. Acad. Stiinte Repub. Mold., Mat., V2017, P15
  • [2] ON GROWTH PROPERTIES OF TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF HIGHER ORDER
    Biswas, Nityagopal
    Datta, Sanjib Kumar
    Tamang, Samten
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04): : 1245 - 1259
  • [3] On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane
    Chiang, Yik-Man
    Feng, Shao-Ji
    [J]. RAMANUJAN JOURNAL, 2008, 16 (01) : 105 - 129
  • [4] FINITENESS OF φ-ORDER OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS IN THE UNIT DISC
    Chyzhykov, I.
    Heittokangas, J.
    Rattya, J.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2009, 109 : 163 - 198
  • [5] Datta S.K., 2019, INTERACT B CAL MATH, V111, P253
  • [6] Datta S.K., 2020, ANALYSIS-UK, V40, P193, DOI [10.1515/anly-2018-0065, DOI 10.1515/ANLY-2018-0065]
  • [7] ESTIMATES FOR THE LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION, PLUS SIMILAR ESTIMATES
    GUNDERSEN, GG
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 : 88 - 104
  • [8] Hayman WK., 1964, Meromorphic functions
  • [9] KOVARI T, 1965, MICH MATH J, V12, P133
  • [10] Laine I., 1993, De Gruyter Studies in Mathematics, V15