SARS-CoV-2 NSP13 interacts with host IRF3, blocking antiviral immune responses

被引:6
作者
Feng, Kuan [1 ,2 ,3 ]
Zhang, Hui-Jiao [2 ,3 ,4 ]
Min, Yuan-Qin [2 ,3 ,5 ]
Zhou, Min [2 ,3 ,5 ]
Deng, Fei [2 ,3 ,5 ]
Wang, Hua-Lin [2 ,3 ,5 ,7 ]
Li, Pei-Qing [1 ,8 ]
Ning, Yun-Jia [2 ,3 ,5 ,6 ,7 ]
机构
[1] Guangzhou Med Univ, Guangzhou Women & Childrens Med Ctr, Dept Pediat Emergency, Guangzhou, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Virol, State Key Lab Virol, Wuhan, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Virol, Natl Virus Resource Ctr, Wuhan, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Ctr Biosafety Mega Sci, Wuhan, Peoples R China
[6] Hubei Jiangxia Lab, Wuhan, Peoples R China
[7] Chinese Acad Sci, Wuhan Inst Virol, Wuhan 430071, Peoples R China
[8] Guangzhou Med Univ, Guangzhou Women & Childrens Med Ctr, Dept Pediat Emergency, Guangzhou 510623, Peoples R China
基金
中国国家自然科学基金;
关键词
antiviral innate immunity; immune evasion; interferon induction; IRF3; NSP13; SARS-CoV-2; virus-host interactions; CRYSTAL-STRUCTURE; VIRUS; REPLICATION; PROTEIN; STAT1;
D O I
10.1002/jmv.28881
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented threat to human health since late 2019. Notably, the progression of the disease is associated with impaired antiviral interferon (IFN) responses. Although multiple viral proteins were identified as potential IFN antagonists, the underlying molecular mechanisms remain to be fully elucidated. In this study, we firstly demonstrate that SARS-CoV-2 NSP13 protein robustly antagonizes IFN response induced by the constitutively active form of transcription factor IRF3 (IRF3/5D). This induction of IFN response by IRF3/5D is independent of the upstream kinase, TBK1, a previously reported NSP13 target, thus indicating that NSP13 can act at the level of IRF3 to antagonize IFN production. Consistently, NSP13 exhibits a specific, TBK1-independent interaction with IRF3, which, moreover, is much stronger than that of NSP13 with TBK1. Furthermore, the NSP13-IRF3 interaction was shown to occur between the NSP13 1B domain and IRF3 IRF association domain (IAD). In agreement with the strong targeting of IRF3 by NSP13, we then found that NSP13 blocks IRF3-directed signal transduction and antiviral gene expression, counteracting IRF3-driven anti-SARS-CoV-2 activity. These data suggest that IRF3 is likely to be a major target of NSP13 in antagonizing antiviral IFN responses and provide new insights into the SARS-CoV-2-host interactions that lead to viral immune evasion.
引用
收藏
页数:11
相关论文
共 31 条
  • [1] Toll-like receptor signalling
    Akira, S
    Takeda, K
    [J]. NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) : 499 - 511
  • [2] Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19
    Blanco-Melo, Daniel
    Nilsson-Payant, Benjamin E.
    Liu, Wen-Chun
    Uhl, Skyler
    Hoagland, Daisy
    Moller, Rasmus
    Jordan, Tristan X.
    Oishi, Kohei
    Panis, Maryline
    Sachs, David
    Wang, Taia T.
    Schwartz, Robert E.
    Lim, Jean K.
    Albrecht, Randy A.
    tenOever, Benjamin R.
    [J]. CELL, 2020, 181 (05) : 1036 - +
  • [3] Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex
    Chen, James
    Wang, Qi
    Malone, Brandon
    Llewellyn, Eliza
    Pechersky, Yakov
    Maruthi, Kashyap
    Eng, Ed T.
    Perry, Jason K.
    Campbell, Elizabeth A.
    Shaw, David E.
    Darst, Seth A.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (03) : 250 - +
  • [4] Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex
    Chen, James
    Malone, Brandon
    Llewellyn, Eliza
    Grasso, Michael
    Shelton, Patrick M. M.
    Olinares, Paul Dominic B.
    Maruthi, Kashyap
    Eng, Edward T.
    Vatandaslar, Hasan
    Chait, Brian T.
    Kapoor, Tarun M.
    Darst, Seth A.
    Campbell, Elizabeth A.
    [J]. CELL, 2020, 182 (06) : 1560 - +
  • [5] A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV)
    Dong, Shengjie
    Sun, Jiachen
    Mao, Zhuo
    Wang, Lu
    Lu, Yi-Lin
    Li, Jiesen
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (09) : 1542 - 1548
  • [6] Interactome profiling reveals interaction of SARS-CoV-2 NSP13 with host factor STAT1 to suppress interferon signaling
    Feng, Kuan
    Min, Yuan-Qin
    Sun, Xiulian
    Deng, Fei
    Li, Peiqing
    Wang, Hualin
    Ning, Yun-Jia
    [J]. JOURNAL OF MOLECULAR CELL BIOLOGY, 2021, 13 (10) : 760 - 762
  • [7] Heartland virus antagonizes type I and III interferon antiviral signaling by inhibiting phosphorylation and nuclear translocation of STAT2 and STAT1
    Feng, Kuan
    Deng, Fei
    Hu, Zhihong
    Wang, Hualin
    Ning, Yun-Jia
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (24) : 9503 - 9517
  • [8] SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1
    Fung, Sin-Yee
    Siu, Kam-Leung
    Lin, Huayue
    Chan, Ching-Ping
    Yeung, Man Lung
    Jin, Dong-Yan
    [J]. CELL AND BIOSCIENCE, 2022, 12 (01)
  • [9] Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes
    Ikeda, Fumiyo
    Hecker, Christina Maria
    Rozenknop, Alexis
    Nordmeier, Rolf Dietrich
    Rogov, Vladimir
    Hofmann, Kay
    Akira, Shizuo
    Doetsch, Volker
    Dikic, Ivan
    [J]. EMBO JOURNAL, 2007, 26 (14) : 3451 - 3462
  • [10] Shared and Distinct Functions of Type I and Type III Interferons
    Lazear, Helen M.
    Schoggins, John W.
    Diamond, Michael S.
    [J]. IMMUNITY, 2019, 50 (04) : 907 - 923