Treatment Detection and Movement Disorder Society-Unified Parkinson's Disease Rating Scale, Part III Estimation Using Finger Tapping Tasks

被引:3
|
作者
ZhuParris, Ahnjili [1 ,2 ,3 ]
Thijssen, Eva [1 ,2 ]
Elzinga, Willem O. O. [1 ]
Makai-Boloni, Soma [1 ,2 ]
Kraaij, Wessel [3 ]
Groeneveld, Geert J. J. [1 ,2 ]
Doll, Robert J. J. [1 ]
机构
[1] Ctr Human Drug Res CHDR, Zernikedreef 8, NL-2333 CL Leiden, Netherlands
[2] Leiden Univ, Med Ctr LUMC, Leiden, Netherlands
[3] Leiden Inst Adv Comp Sci LIACS, Leiden, Netherlands
关键词
Parkinson's disease; finger tapping; Movement Disorder Society-Unified Parkinson's Disease Rating Scale; machine learning; classification; regression; FINE MOTOR; LEVODOPA; BRADYKINESIA; VALIDATION; FEATURES; LIMB;
D O I
10.1002/mds.29520
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The validation of objective and easy-to-implement biomarkers that can monitor the effects of fast-acting drugs among Parkinson's disease (PD) patients would benefit antiparkinsonian drug development. We developed composite biomarkers to detect levodopa/carbidopa effects and to estimate PD symptom severity. For this development, we trained machine learning algorithms to select the optimal combination of finger tapping task features to predict treatment effects and disease severity. Data were collected during a placebo-controlled, crossover study with 20 PD patients. The alternate index and middle finger tapping (IMFT), alternative index finger tapping (IFT), and thumb-index finger tapping (TIFT) tasks and the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III were performed during treatment. We trained classification algorithms to select features consisting of the MDS-UPDRS III item scores; the individual IMFT, IFT, and TIFT; and all three tapping tasks collectively to classify treatment effects. Furthermore, we trained regression algorithms to estimate the MDS-UPDRS III total score using the tapping task features individually and collectively. The IFT composite biomarker had the best classification performance (83.50% accuracy, 93.95% precision) and outperformed the MDS-UPDRS III composite biomarker (75.75% accuracy, 73.93% precision). It also achieved the best performance when the MDS-UPDRS III total score was estimated (mean absolute error: 7.87, Pearson's correlation: 0.69). We demonstrated that the IFT composite biomarker outperformed the combined tapping tasks and the MDS-UPDRS III composite biomarkers in detecting treatment effects. This provides evidence for adopting the IFT composite biomarker for detecting antiparkinsonian treatment effect in clinical trials. & COPY; 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
引用
收藏
页码:1795 / 1805
页数:11
相关论文
共 50 条
  • [31] Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results
    Goetz, Christopher G.
    Tilley, Barbara C.
    Shaftman, Stephanie R.
    Stebbins, Glenn T.
    Fahn, Stanley
    Martinez-Martin, Pablo
    Poewe, Werner
    Sampaio, Cristina
    Stern, Matthew B.
    Dodel, Richard
    Dubois, Bruno
    Holloway, Robert
    Jankovic, Joseph
    Kulisevsky, Jaime
    Lang, Anthony E.
    Lees, Andrew
    Leurgans, Sue
    LeWitt, Peter A.
    Nyenhuis, David
    Olanow, C. Warren
    Rascol, Olivier
    Schrag, Anette
    Teresi, Jeanne A.
    van Hilten, Jacobus J.
    LaPelle, Nancy
    MOVEMENT DISORDERS, 2008, 23 (15) : 2129 - 2170
  • [32] Validation of the Portuguese version of the Movement Disorder Society non-motor rating scale (MDS-NMS) in Parkinson's disease
    Vale, Thiago Cardoso
    Santos, Daniela Pereira
    de Oliveira, Daniel Sabino
    Brandao, Pedro Renato de Paula
    Pereira, Danilo Assis
    Bouca-Machado, Raquel
    Silva, Leonardo Oliveira
    Rieder, Carlos Roberto de Mello
    Barbosa, Egberto Reis
    Cury, Rubens Gisbert
    Parmera, Jacy Bezerra
    Teive, Helio Afonso Ghizoni
    Ferreira, Matheus Gomes
    Ferraz, Henrique Ballalai
    da Silva, Carolina Candeias
    Tumas, Vitor
    Cunha, Ana Luiza Nunes
    Braga-Neto, Pedro
    Lima, Danielle Pessoa
    Della Colleta, Marcus Vinicius
    Maia, Debora
    Fontana, Marco de Souza
    Damas, Catarina N.
    Lobo, Patricia Pita
    Rebordao, Leonor
    Magalhaes, Andreia D.
    Peralta, Ana Rita
    Simoes, Rita M.
    Lampreia, Tania
    Velon, Ana Graca
    Carneiro, Diogo
    Raimundo, Rita
    Gago, Miguel
    Mendes, Alexandre
    Cha, Nuno Vila
    Damasio, Joana
    Costa, Sara
    Lopes, Rui
    Morgadinho, Ana
    Mestre, Tiago
    Stebbins, Glenn T.
    Luo, Sheng
    Goetz, Christopher G.
    Ferreira, Joaquim J.
    Cardoso, Francisco
    PARKINSONISM & RELATED DISORDERS, 2025, 132
  • [33] Comparison of a timed motor test battery to the Unified Parkinson's Disease Rating Scale-III in Parkinson's disease
    Haaxma, Charlotte A.
    Bloem, Bastiaan R.
    Borm, George F.
    Horstink, Martin W. I. M.
    MOVEMENT DISORDERS, 2008, 23 (12) : 1707 - 1717
  • [34] Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): Process, format, and clinimetric testing plan
    Goetz, Christopher G.
    Fahn, Stanley
    Martinez-Martin, Pablo
    Poewe, Werner
    Sampaio, Cristina
    Stebbins, Glenn T.
    Stern, Matthew B.
    Tilley, Barbara C.
    Dodel, Richard
    Dubois, Bruno
    Holloway, Robert
    Jankovic, Joseph
    Kulisevsky, Jaime
    Lang, Anthony E.
    Lees, Andrew
    Leurgans, Sue
    LeWitt, Peter A.
    Nyenhuis, David
    Olanow, C. Warren
    Rascol, Olivier
    Schrag, Anette
    Teresi, Jeanne A.
    van Hilten, Jacobus J.
    LaPelle, Nancy
    MOVEMENT DISORDERS, 2007, 22 (01) : 41 - 47
  • [35] Movement Disorder Society Unified Parkinson's Disease Rating Scale Motor Examination Retains Its 2-Domain Profile in Both On and Off States
    Guo, Yuanyuan
    Stebbins, Glenn T.
    Mestre, Tiago A.
    Goetz, Christopher G.
    Luo, Sheng
    MOVEMENT DISORDERS CLINICAL PRACTICE, 2022, 9 (08): : 1149 - 1151
  • [36] Estimation of UPDRS finger tapping score by using artificial neural network for quantitative diagnosis of Parkinson's disease
    Fukawa, K.
    Okuno, R.
    Yokoe, M.
    Sakoda, S.
    Akazawa, K.
    2007 6TH INTERNATIONAL SPECIAL TOPIC CONFERENCE ON INFORMATION TECHNOLOGY APPLICATIONS IN BIOMEDICINE, 2007, : 162 - +
  • [37] Predicting Outcomes in Parkinson's Disease: Comparison of Simple Motor Performance Measures and the Unified Parkinson's Disease Rating Scale-III
    Grill, Stephen
    Weuve, Jennifer
    Weisskopf, Marc G.
    JOURNAL OF PARKINSONS DISEASE, 2011, 1 (03) : 287 - 298
  • [38] Gender-, Age-, and Race/Ethnicity-Based Differential Item Functioning Analysis of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale
    Goetz, Christopher G.
    Liu, Yuanyuan
    Stebbins, Glenn T.
    Wang, Lu
    Tilley, Barbara C.
    Teresi, Jeanne A.
    Merkitch, Douglas
    Luo, Sheng
    MOVEMENT DISORDERS, 2016, 31 (12) : 1865 - 1873
  • [39] Metric attributes of the Unified Parkinson's disease Rating Scale 3.0 battery: Part II, construct and content validity
    Forjaz, Maria Joao
    Martinez-Martin, Pablo
    MOVEMENT DISORDERS, 2006, 21 (11) : 1892 - 1898
  • [40] Unified Parkinson's disease rating scale motor examination: Are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable?
    Post, B
    Merkus, MP
    de Bie, RMA
    de Haan, RJ
    Speelman, JD
    MOVEMENT DISORDERS, 2005, 20 (12) : 1577 - 1584