The Riemann problem for equations of a cold plasma

被引:0
作者
Rozanova, Olga S. [1 ]
机构
[1] Lomonosov Moscow State Univ, Math & Mech Dept, Leninskie Gory, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Quasilinear hyperbolic system; Riemann problem; Non-uniqueness; Singular shock; Plasma oscillations; CONSERVATION-LAWS; SYSTEMS;
D O I
10.1016/j.jmaa.2023.127400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A solution of the Riemann problem is constructed for a nonstrictly hyperbolic inho-mogeneous system of equations describing one-dimensional cold plasma oscillations. Each oscillation period includes one rarefaction wave and one shock wave containing a delta singularity. The rarefaction wave can be constructed in a non-unique way, the admissibility principle is proposed.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 16 条
  • [1] Alexandrov AF., 1984, PRINCIPLES PLASMA EL, DOI [10.1007/978-3-642-69247-5, DOI 10.1007/978-3-642-69247-5]
  • [2] Balogh A., 2013, PHYS COLLISIONLESS S
  • [3] Chizhonkov E.V., 2019, Mathematical aspects of modelling oscillations and wake waves in plasma
  • [4] Davidson R. C., 1972, METHODS NONLINEAR PL
  • [5] Critical thresholds in Euler-Poisson equations
    Engelberg, S
    Liu, HL
    Tadmor, E
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 : 109 - 157
  • [6] Application of the Energy Conservation Law in the Cold Plasma Model
    Frolov, A. A.
    Chizhonkov, E. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (03) : 498 - 513
  • [7] Ghoshal SS, 2023, Arxiv, DOI arXiv:2109.13182
  • [8] Kanwal R. P., 1998, Generalized Functions Theory and Technique: Theory and Technique
  • [9] Hyperbolicity singularities in rarefaction waves
    Mailybaev, Alexei A.
    Marchesin, Dan
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (01) : 1 - 29
  • [10] MAGNETOHYDRODYNAMIC SHOCK STRUCTURE WITHOUT COLLISIONS
    MORAWETZ, CS
    [J]. PHYSICS OF FLUIDS, 1961, 4 (08) : 988 - 1006