Hermite-Hadamard and Fejer-type inequalities for generalized ?-convex stochastic processes

被引:2
|
作者
Bisht, Jaya [1 ]
Mishra, Rohan [2 ]
Hamdi, A. [3 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi, India
[2] Banaras Hindu Univ, Inst Sci, Dept Stat, Varanasi, India
[3] Qatar Univ, Coll Arts & Sci, Dept Math Stat & Phys, Math Program, POB 2713, Doha, Qatar
关键词
Hermite-Hadamard inequality; convex stochastic processes; eta-convex stochastic processes; coordinated convex stochastic processes;
D O I
10.1080/03610926.2023.2218506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce the concept of (?(1),?(2))-convex stochastic processes on coordinates and establish Hermite-Hadamard-type inequality for these stochastic processes. Moreover, we prove new integral inequality of Hermite-Hadamard-Fejer type for newly defined coordinated ?-convex stochastic processes on a rectangle. The results presented in this article would provide extensions of those given in earlier works.
引用
收藏
页码:5299 / 5310
页数:12
相关论文
共 50 条