Hermite-Hadamard and Fejer-type inequalities for generalized ?-convex stochastic processes

被引:2
|
作者
Bisht, Jaya [1 ]
Mishra, Rohan [2 ]
Hamdi, A. [3 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi, India
[2] Banaras Hindu Univ, Inst Sci, Dept Stat, Varanasi, India
[3] Qatar Univ, Coll Arts & Sci, Dept Math Stat & Phys, Math Program, POB 2713, Doha, Qatar
关键词
Hermite-Hadamard inequality; convex stochastic processes; eta-convex stochastic processes; coordinated convex stochastic processes;
D O I
10.1080/03610926.2023.2218506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce the concept of (?(1),?(2))-convex stochastic processes on coordinates and establish Hermite-Hadamard-type inequality for these stochastic processes. Moreover, we prove new integral inequality of Hermite-Hadamard-Fejer type for newly defined coordinated ?-convex stochastic processes on a rectangle. The results presented in this article would provide extensions of those given in earlier works.
引用
收藏
页码:5299 / 5310
页数:12
相关论文
共 50 条
  • [1] Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Chasreechai, Saowaluck
    AIMS MATHEMATICS, 2021, 6 (11): : 11989 - 12010
  • [2] On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes
    Fu, Haoliang
    Saleem, Muhammad Shoaib
    Nazeer, Waqas
    Ghafoor, Mamoona
    Li, Peigen
    AIMS MATHEMATICS, 2021, 6 (06): : 6322 - 6339
  • [3] Hermite-Hadamard type inequalities for r-convex positive stochastic processes
    Ul-Haq, Wasim
    Rehman, Nasir
    Al-Hussain, Ziyad Ali
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 87 - 90
  • [4] ON NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS
    Qaisar, Shahid
    He, Chuanjiang
    Hussain, Sabir
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 139 - 148
  • [5] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01) : 17 - 33
  • [6] Hermite-Hadamard inequalities for generalized convex functions
    Bessenyei M.
    Páles Z.
    aequationes mathematicae, 2005, 69 (1-2) : 32 - 40
  • [7] EXTENSIONS AND REFINEMENTS OF FEJER AND HERMITE-HADAMARD TYPE INEQUALITIES
    Abramovich, Shoshana
    Persson, Lars-Erik
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 759 - 772
  • [8] Fejer and Hermite-Hadamard type inequalities for superquadratic functions
    Abramovich, Shoshana
    Baric, Josipa
    Pecaric, Josip
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 1048 - 1056
  • [9] On Fejer and Hermite-Hadamard type Inequalities involving h-Convex Functions and Applications
    Obeidat, Sofian
    Latif, Muhammad Amer
    Dragomir, Sever Silvestru
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (06): : 1 - 18
  • [10] Hermite-Hadamard inequality for convex stochastic processes
    Kotrys, Dawid
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 143 - 151