Fractional differential operators, fractional Sobolev spaces and fractional variation on homogeneous Carnot groups

被引:1
作者
Zhang, Tong [1 ]
Zhu, Jie-Xiang [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
Homogeneous Carnot groups; Fractional gradient; Fractional divergence; Fractional Sobolev spaces; Fractional BV functions; Fractional Caccioppoli sets; DISTRIBUTIONAL APPROACH; INEQUALITIES; LAPLACIANS; EXISTENCE;
D O I
10.1007/s13540-023-00173-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a novel definition of the fractional gradient and divergence of order a ? (0, 1) through the use of Riesz potential on homogeneous Carnot groups. We introduce and investigate the distributional fractional Sobolev space and the space of fractional BV functions in this context. Additionally, we provide a definition of fractional Caccioppoli sets on homogeneous Carnot groups and demonstrate their blow-up property, using similar methods as outlined in [13].
引用
收藏
页码:1786 / 1841
页数:56
相关论文
共 50 条
[1]  
Agrachev A, 2016, EMS SER LECT MATH, P1
[2]   Weak differentiability of BV functions on stratified groups [J].
Ambrosio, L ;
Magnani, V .
MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (01) :123-153
[3]   Rectifiability of Sets of Finite Perimeter in Carnot Groups: Existence of a Tangent Hyperplane [J].
Ambrosio, Luigi ;
Kleiner, Bruce ;
Le Donne, Enrico .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (03) :509-540
[4]  
[Anonymous], 2004, Oxford Lecture Series in Mathematics and its Applications
[5]  
Azevedo A., 2022, ARXIV
[6]   Differentiability and Poincare-type inequalities in metric measure spaces [J].
Bate, David ;
Li, Sean .
ADVANCES IN MATHEMATICS, 2018, 333 :868-930
[7]   Reverse Poincare inequalities, isoperimetry, and Riesz transforms in Carnot groups [J].
Baudoin, Fabrice ;
Bonnefont, Michel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 :48-59
[8]  
Bellido J.C., 2022, ARXIV
[9]  
Bellido JC, 2021, CALC VAR PARTIAL DIF, V60, DOI 10.1007/s00526-020-01868-5
[10]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3