Energy-aware intelligent scheduling for deadline-constrained workflows in sustainable cloud computing

被引:8
作者
Cao, Min [1 ]
Li, Yaoyu [2 ]
Wen, Xupeng [3 ]
Zhao, Yue [2 ]
Zhu, Jianghan [2 ]
机构
[1] Zhanjiang Univ Sci & Technol, Intelligent Mfg Coll, Zhanjiang 524094, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, Changsha 410073, Peoples R China
[3] Cent South Univ, Sch Traf & Transportat Engn, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
Sustainable cloud computing; Intelligent scheduling; Energy-efficiency; Workflow; Dynamic voltage; frequency scaling; TASKS; ENVIRONMENT; ALGORITHM;
D O I
10.1016/j.eij.2023.04.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is challenging to handle the non-linear power consumption model, complex workflow structures, and diverse user-defined deadlines for energy-efficient workflow scheduling in sustainable cloud computing. Although metaheuristics are very attractive to solve this problem, most of the existing work regards the problem as a black-box and ignores the use of domain knowledge. To make up for their shortcomings, this paper tailors an energy-aware intelligent scheduling algorithm (EIS) with three new mechanisms. First, we derive the optimal execution time that minimizes energy consumption for each task on a given resource. Second, based on the optimal execution time of each workflow task, the EIS distributes the workflow slack time (difference between its completion time and deadline) to reduce the voltages and frequencies of task executions for energy saving. Third, the EIS mines the idle time gaps caused by task precedence constraints to further reduce dynamic energy consumption whilst satisfying workflows' deadline constraints. To measure the performance of the EIS, we conduct extensive comparison experi-ments based on actual workflow applications. The results demonstrate that the energy consumption of the EIS is much lower than that of the competitors under different deadlines, and has a faster descend rate with the evolution process.(c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Computers and Artificial Intel-ligence, Cairo University. This is an open access article under the CC BY-NC-ND license (http://creative-commons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:277 / 290
页数:14
相关论文
共 60 条
[1]   LIGO: the Laser Interferometer Gravitational-Wave Observatory [J].
Abbott, B. P. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Behnke, B. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, J. K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Bridges, D. O. .
REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
[2]   Using differential evolution and Moth-Flame optimization for scientific workflow scheduling in fog computing [J].
Ahmed, Omed Hassan ;
Lu, Joan ;
Xu, Qiang ;
Ahmed, Aram Mahmood ;
Rahmani, Amir Masoud ;
Hosseinzadeh, Mehdi .
APPLIED SOFT COMPUTING, 2021, 112
[3]   Grouped tasks scheduling algorithm based on QoS in cloud computing network [J].
Ali, Hend Gamal El Din Hassan ;
Saroit, Imane Aly ;
Kotb, Amira Mohamed .
EGYPTIAN INFORMATICS JOURNAL, 2017, 18 (01) :11-19
[4]   A View of Cloud Computing [J].
Armbrust, Michael ;
Fox, Armando ;
Griffith, Rean ;
Joseph, Anthony D. ;
Katz, Randy ;
Konwinski, Andy ;
Lee, Gunho ;
Patterson, David ;
Rabkin, Ariel ;
Stoica, Ion ;
Zaharia, Matei .
COMMUNICATIONS OF THE ACM, 2010, 53 (04) :50-58
[5]   Montage: A grid enabled engine for delivering custom science-grade mosaics on demand [J].
Berriman, GB ;
Deelman, E ;
Good, J ;
Jacob, J ;
Katz, DS ;
Kesselman, C ;
Laity, A ;
Prince, TA ;
Singh, G ;
Su, MH .
OPTIMIZING SCIENTIFIC RETURN FOR ASTRONOMY THROUGH INFORMATION TECHNOLOGIES, 2004, 5493 :221-232
[6]   Energy efficient fault tolerance techniques in green cloud computing: A systematic survey and taxonomy [J].
Bharany, Salil ;
Badotra, Sumit ;
Sharma, Sandeep ;
Rani, Shalli ;
Alazab, Mamoun ;
Jhaveri, Rutvij H. ;
Gadekallu, Thippa Reddy .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
[7]   Meeting Deadlines of Scientific Workflows in Public Clouds with Tasks Replication [J].
Calheiros, Rodrigo N. ;
Buyya, Rajkumar .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (07) :1787-1796
[8]   Resource Allocation in 5G IoV Architecture Based on SDN and Fog-Cloud Computing [J].
Cao, Bin ;
Sun, Zhiheng ;
Zhang, Jintong ;
Gu, Yu .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) :3832-3840
[9]  
Cao E, 2022, IN PRESS
[10]   Achieving Reliable and Secure Communications in Wireless-Powered NOMA Systems [J].
Cao, Kunrui ;
Wang, Buhong ;
Ding, Haiyang ;
Lv, Lu ;
Tian, Jiwei ;
Hu, Hang ;
Gong, Fengkui .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (02) :1978-1983