Sustainable high-energy aqueous zinc-manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity

被引:50
作者
Yang, Huijun [1 ]
Zhu, Ruijie [2 ]
Yang, Yang [3 ]
Lu, Ziyang [3 ]
Chang, Zhi [1 ]
He, Ping [4 ,5 ]
Zhu, Chunyu [6 ]
Kitano, Sho [7 ]
Aoki, Yoshitaka [7 ]
Habazaki, Hiroki [7 ]
Zhou, Haoshen [1 ,4 ,5 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba 3058568, Japan
[2] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[3] Univ Tsukuba, Grad Sch Syst & Informat Engn, 1-1-1 Tennoudai, Tsukuba, Japan
[4] Nanjing Univ, Coll Engn & Appl Sci, Ctr Energy Storage Mat Technol, Jiangsu Key Lab Artificial Funct Mat,Natl Lab Soli, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[6] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Peoples R China
[7] Hokkaido Univ, Fac Engn, Div Appl Chem, Sapporo, Hokkaido 0608628, Japan
关键词
LONG-LIFE; DEFORMATION; PERFORMANCE; CHEMISTRY; IMPACT; ANODE;
D O I
10.1039/d2ee03777g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The re-evaluation of zinc (Zn)-based energy storage systems satisfies emerging demands in terms of safety and cost-effectiveness. However, the dendritic Zn morphology and resulting short circuits within the cell remain long-standing challenges. Moreover, diverse Zn dendrite propagation exacerbates the situation, particularly during high-capacity battery operation. The high-capacity Zn deposition/dissolution process involves numerous sites and interfaces, which leads to disordered Zn dendrite growth because of the inherent diffusion-limited aggregation mechanism. Here, we demonstrate a robust polymer separator that serves as both a physical barrier to stress-governed metal electrodeposition and an ionic charge carrier for fast Zn2+ diffusivity. These insights enable an ultra-high Zn reversibility (99.97%) for 2000 cycles at 20.0 mA cm(-2) and 4.0 mA h cm(-2), and a high-energy-density (115 W h kg(-1) based on pouch cell) Zn-MnO2 full battery with an aggressive N/P capacity ratio (1.35). The abundant and environmentally friendly cell components make it a sustainable battery technology for global electrification.
引用
收藏
页码:2133 / 2141
页数:9
相关论文
共 46 条
[1]   Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries [J].
Abdulla, Jufni ;
Cao, Jin ;
Zhang, Dongdong ;
Zhang, Xinyu ;
Sriprachuabwong, Chakrit ;
Kheawhom, Soorathep ;
Wangyao, Panyawat ;
Qin, Jiaqian .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) :4602-4609
[2]   Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries [J].
Bayaguud, Aruuhan ;
Luo, Xiao ;
Fu, Yanpeng ;
Zhu, Changbao .
ACS ENERGY LETTERS, 2020, 5 (09) :3012-3020
[3]   Rechargeable batteries with aqueous electrolytes [J].
Beck, F ;
Ruetschi, P .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2467-2482
[4]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[5]   Fluorinated interphase enables reversible aqueous zinc battery chemistries [J].
Cao, Longsheng ;
Li, Dan ;
Pollard, Travis ;
Deng, Tao ;
Zhang, Bao ;
Yang, Chongyin ;
Chen, Long ;
Vatamanu, Jenel ;
Hu, Enyuan ;
Hourwitz, Matt J. ;
Ma, Lin ;
Ding, Michael ;
Li, Qin ;
Hou, Singyuk ;
Gaskell, Karen ;
Fourkas, John T. ;
Yang, Xiao-Qing ;
Xu, Kang ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :902-+
[6]   An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Ye, Chao ;
Zhang, Qinghua ;
Chen, Yungui ;
Gu, Lin ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (23) :7823-7828
[7]   Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J].
Chen, Shuru ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Li, Qiuyan ;
Yu, Lu ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Whittingham, M. Stanley ;
Meng, Shirley ;
Xiao, Jie ;
Liu, Jun .
JOULE, 2019, 3 (04) :1094-1105
[8]   Quantitative phase-field modeling of dendritic electrodeposition [J].
Cogswell, Daniel A. .
PHYSICAL REVIEW E, 2015, 92 (01)
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator [J].
Ferrese, Anthony ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (09) :A1350-A1359