ON INERTIAL SUBGRADIENT EXTRAGRADIENT RULE FOR MONOTONE BILEVEL EQUILIBRIUM PROBLEMS

被引:11
作者
Ceng, Lu-chuan [1 ]
Petrusel, A. D. R. I. A. N. [2 ]
Qin, X. [3 ]
Yao, J. C. [4 ,5 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[3] Kyung Hee Univ, Dept ESP, Seoul, South Korea
[4] China Med Univ Hosp, China Med Univ, Res Ctr Interneural Comp, Taichung 40447, Taiwan
[5] Natl Sun Yat sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
来源
FIXED POINT THEORY | 2023年 / 24卷 / 01期
关键词
Inertial subgradient extragradient rule; monotone bilevel equilibrium problem; general system of variational inclusions; asymptotically nonexpansive mapping; countable nonexpansive mappings; VARIATIONAL INEQUALITY CONSTRAINTS; STRONG-CONVERGENCE; SYSTEMS;
D O I
10.24193/fpt-ro.2023.1.05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a real Hilbert space, let the GSVI and CFPP represent a general system of varia-tional inclusions and a common fixed point problem of countable nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new inertial subgradient ex-tragradient rule we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP as constraints. Some strong convergence theorems for the proposed algorithms are established under some mild assumptions. Our results improve and extend some corresponding results in the earlier and very recent literature.
引用
收藏
页码:101 / 126
页数:26
相关论文
共 27 条
  • [1] [Anonymous], 1984, Applied Nonlinear Analysis
  • [2] Bigi G., 2019, NONLINEAR PROGRAMMIN, DOI DOI 10.1007/978-3-030-00205-3
  • [3] Strong convergence results for variational inequalities and fixed point problems using modified viscosity implicit rules
    Cai, Gang
    Shehu, Yekini
    Iyiola, Olaniyi Samuel
    [J]. NUMERICAL ALGORITHMS, 2018, 77 (02) : 535 - 558
  • [4] Hybrid viscosity methods for equilibrium problems, variational inequalities, and fixed point problems
    Ceng, L. C.
    Latif, A.
    Al-Mazrooei, A. E.
    [J]. APPLICABLE ANALYSIS, 2016, 95 (05) : 1088 - 1117
  • [5] Iterative Algorithms for a System of Variational Inclusions in Banach Spaces
    Ceng, Lu-Chuan
    Postolache, Mihai
    Yao, Yonghong
    [J]. SYMMETRY-BASEL, 2019, 11 (06):
  • [6] Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings
    Ceng, Lu-Chuan
    Wen, Ching-Feng
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2431 - 2447
  • [7] Variational Inequalities Approaches to Minimization Problems with Constraints of Generalized Mixed Equilibria and Variational Inclusions
    Ceng, Lu-Chuan
    Postolache, Mihai
    Wen, Ching-Feng
    Yao, Yonghong
    [J]. MATHEMATICS, 2019, 7 (03)
  • [8] SYSTEMS OF VARIATIONAL INEQUALITIES WITH HIERARCHICAL VARIATIONAL INEQUALITY CONSTRAINTS FOR LIPSCHITZIAN PSEUDOCONTRACTIONS
    Ceng, Lu-Chuan
    Petrusel, Adrian
    Yao, Jen-Chih
    Yao, Yonghong
    [J]. FIXED POINT THEORY, 2019, 20 (01): : 113 - 133
  • [9] Generalized η-D-gap functions and error bounds for a class of equilibrium problems
    Ceng, Lu-Chuan
    Sahu, D. R.
    Wen, Ching-Feng
    Wong, Ngai-Ching
    [J]. APPLICABLE ANALYSIS, 2017, 96 (14) : 2367 - 2389
  • [10] Ceng LC, 2016, J NONLINEAR CONVEX A, V17, P987