RanBox: anomaly detection in the copula space

被引:10
作者
Dorigo, Tommaso [1 ,4 ]
Fumanelli, Martina [2 ]
Maccani, Chiara [3 ]
Mojsovska, Marija [3 ]
Strong, Giles C. [3 ]
Scarpa, Bruno [2 ]
机构
[1] Sez Padova, Ist Nazl Fis Nucleare, Via F Marzolo 8, I-35131 Padua, Italy
[2] Univ Padua, Dipartimento Sci Stat, Via C Battisti 241, I-35131 Padua, Italy
[3] Univ Padua, Dipartimento Fis & Astron GGalilei, Via F Marzolo 8, I-35131 Padua, Italy
[4] Universal Sci Educ & Res Network USERN, Tehran, Iran
关键词
Hadron-Hadron Scattering; Anomaly detection; Unsupervised learning; BOOSTED DECISION TREES; MODEL;
D O I
10.1007/JHEP01(2023)008
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The unsupervised search for overdense regions in high-dimensional feature spaces, where locally high population densities may be associated with anomalous contaminations to an otherwise more uniform population, is of relevance to applications ranging from fundamental research to industrial use cases. Motivated by the specific needs of searches for new phenomena in particle collisions, we propose a novel approach that targets signals of interest populating compact regions of the feature space. The method consists in a systematic scan of subspaces of a standardized copula of the feature space, where the minimum p-value of a hypothesis test of local uniformity is sought by greedy descent. We characterize the performance of the proposed algorithm and show its effectiveness in several experimental situations.
引用
收藏
页数:46
相关论文
共 56 条
[1]  
Abazov VM, 2001, PHYS REV D, V64, DOI [10.1103/PhysRevD.64.092004, 10.1103/PhysRevD.64.012004]
[2]   Quasi-model-independent search for new high pT physics at D0 [J].
Abbott, B ;
Abdesselam, A ;
Abolins, M ;
Abramov, V ;
Acharya, BS ;
Adams, DL ;
Adams, M ;
Alves, GA ;
Amos, N ;
Anderson, EW ;
Baarmand, MM ;
Babintsev, VV ;
Babukhadia, L ;
Bacon, TC ;
Baden, A ;
Baldin, B ;
Balm, PW ;
Banerjee, S ;
Barberis, E ;
Baringer, P ;
Bartlett, JF ;
Bassler, U ;
Bauer, D ;
Bean, A ;
Begel, M ;
Belyaev, A ;
Beri, SB ;
Bernardi, G ;
Bertram, I ;
Besson, A ;
Beuselinck, R ;
Bezzubov, VA ;
Bhat, PC ;
Bhatnagar, V ;
Bhattacharjee, M ;
Blazey, G ;
Blessing, S ;
Boehnlein, A ;
Bojko, NI ;
Borcherding, F ;
Brandt, A ;
Breedon, R ;
Briskin, G ;
Brock, R ;
Brooijmans, G ;
Bross, A ;
Buchholz, D ;
Buehler, M ;
Buescher, V ;
Burtovoi, VS .
PHYSICAL REVIEW LETTERS, 2001, 86 (17) :3712-3717
[3]  
Abe N., 2006, P 12 ACM SIGKDD INT, V2006, P504, DOI DOI 10.1145/1150402.1150459
[4]   Search for electron neutrino appearance at the Δm2∼1 eV2 scale [J].
Aguilar-Arevalo, A. A. ;
Bazarko, A. O. ;
Brice, S. J. ;
Brown, B. C. ;
Bugel, L. ;
Cao, J. ;
Coney, L. ;
Conrad, J. M. ;
Cox, D. C. ;
Curioni, A. ;
Djurcic, Z. ;
Finley, D. A. ;
Fleming, B. T. ;
Ford, R. ;
Garcia, F. G. ;
Garvey, G. T. ;
Green, C. ;
Green, J. A. ;
Hart, T. L. ;
Hawker, E. ;
Imlay, R. ;
Johnson, R. A. ;
Kasper, P. ;
Katori, T. ;
Kobilarcik, T. ;
Kourbanis, I. ;
Koutsoliotas, S. ;
Laird, E. M. ;
Link, J. M. ;
Liu, Y. ;
Liu, Y. ;
Louis, W. C. ;
Mahn, K. B. M. ;
Marsh, W. ;
Martin, P. S. ;
McGregor, G. ;
Metcalf, W. ;
Meyers, P. D. ;
Mills, F. ;
Mills, G. B. ;
Monroe, J. ;
Moore, C. D. ;
Nelson, R. H. ;
Nienaber, P. ;
Ouedraogo, S. ;
Patterson, R. B. ;
Perevalov, D. ;
Polly, C. C. ;
Prebys, E. ;
Raaf, J. L. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[5]  
[Anonymous], Anomaly
[6]  
[Anonymous], RANBOX
[7]  
[Anonymous], US
[8]  
[Anonymous], The credit card fraud detection dataset
[9]  
Athanassopoulos C., 1995, Phys. Rev. Lett, V75, P2650, DOI [DOI 10.1103/PHYSREVLETT.75.2650, 10.1103/PhysRevLett.75.2650]
[10]   Anomaly detection with convolutional Graph Neural Networks [J].
Atkinson, Oliver ;
Bhardwaj, Akanksha ;
Englert, Christoph ;
Ngairangbam, Vishal S. ;
Spannowsky, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)