Eigenvalue type problem in s(., .)-fractional Musielak-Sobolev spaces

被引:1
作者
Srati, Mohammed [1 ]
机构
[1] Univ Mohammed First, High Sch Educ & Format ESEF, Oujda, Morocco
关键词
s(; )-Fractional Musielak-Sobolev spaces; Eigenvalue problems; Ekeland's ariational principle; REGULARITY CRITERION;
D O I
10.1007/s41808-024-00269-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the s(., .)-fractional Musielak-Sobolev spaces W-s(x,W-y) L-Phi x,L-y (Omega). Then, we show that there exists lambda(*) > 0 such that any lambda is an element of (0, lambda(*)) is an eigenvalue for the following problem, by means of Ekeland's variational principle (P-a){(-Delta)(s(x,.))(a(x,.)) u = lambda vertical bar u vertical bar (q(x)-2) u in Omega, u = 0 in R-N\Omega, where Omega is a bounded open subset of R-N with C-0,C-1-regularity and bounded boundary.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 42 条
[41]   Fixed-Point Results for a Generalized Almost (s, q)-Jaggi F-Contraction-Type on b-Metric-Like Spaces [J].
Hammad, Hasanen A. ;
De la Sen, Manuel .
MATHEMATICS, 2020, 8 (01)