Eigenvalue type problem in s(., .)-fractional Musielak-Sobolev spaces

被引:0
作者
Srati, Mohammed [1 ]
机构
[1] Univ Mohammed First, High Sch Educ & Format ESEF, Oujda, Morocco
关键词
s(; )-Fractional Musielak-Sobolev spaces; Eigenvalue problems; Ekeland's ariational principle; REGULARITY CRITERION;
D O I
10.1007/s41808-024-00269-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the s(., .)-fractional Musielak-Sobolev spaces W-s(x,W-y) L-Phi x,L-y (Omega). Then, we show that there exists lambda(*) > 0 such that any lambda is an element of (0, lambda(*)) is an eigenvalue for the following problem, by means of Ekeland's variational principle (P-a){(-Delta)(s(x,.))(a(x,.)) u = lambda vertical bar u vertical bar (q(x)-2) u in Omega, u = 0 in R-N\Omega, where Omega is a bounded open subset of R-N with C-0,C-1-regularity and bounded boundary.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 41 条
[21]   On solvability of p- harmonic type equations in grand Sobolev spaces [J].
Najafov, Alik M. ;
Alekberli, Sain T. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (03) :579-586
[22]   The Gleason's Problem on F(p,q,s) Type Spaces in the Unit Ball of Cn [J].
Zhang, Xuejun ;
Guo, Yuting ;
Shang, Qingli ;
Li, Shenlian .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (05) :1251-1265
[23]   A Stokes-Brinkman-Type Formulation for The Eigenvalue Problem in Porous Media [J].
Lepe, Felipe ;
Rivera, Gonzalo ;
Vellojin, Jesus .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 104 (03)
[24]   ON SOME QUASILINEAR EQUATIONS OF KIRCHHOFF TYPE: A GENERALIZED ORLICZ-SOBOLEV SPACES SETTING [J].
Aouaoui, Sami .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2013, 14 (02) :263-280
[25]   FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS [J].
Qi, Yongfang ;
Li, Guoping .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
[26]   Volterra Composition Operators from F(p, q, s) Spaces to Bloch-type Spaces [J].
Yang, Weifeng .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (02) :267-277
[27]   Generalized composition operators from F(p, q, s) spaces to Bloch-type spaces [J].
Yang, Weifeng ;
Meng, Xiaoge .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2513-2519
[28]   GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH-TYPE SPACES AND F(p, q, s) SPACES [J].
He, Zhong Hua ;
Cao, Guangfu .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (04) :1211-1225
[29]   The Gleason's problem on normal weight general function spaces in the unit ball of Cn [J].
Guo, Yu-ting ;
Zhang, Xue-jun .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2023, 38 (04) :604-613
[30]   EXTENDED CESARO OPERATORS FROM F(p, q, s) SPACES TO BLOCH- TYPE SPACES IN THE UNIT BALL [J].
Lv, Xiaofen ;
Tang, Xiaomin .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 24 (01) :57-66