Eigenvalue type problem in s(., .)-fractional Musielak-Sobolev spaces

被引:0
作者
Srati, Mohammed [1 ]
机构
[1] Univ Mohammed First, High Sch Educ & Format ESEF, Oujda, Morocco
关键词
s(; )-Fractional Musielak-Sobolev spaces; Eigenvalue problems; Ekeland's ariational principle; REGULARITY CRITERION;
D O I
10.1007/s41808-024-00269-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the s(., .)-fractional Musielak-Sobolev spaces W-s(x,W-y) L-Phi x,L-y (Omega). Then, we show that there exists lambda(*) > 0 such that any lambda is an element of (0, lambda(*)) is an eigenvalue for the following problem, by means of Ekeland's variational principle (P-a){(-Delta)(s(x,.))(a(x,.)) u = lambda vertical bar u vertical bar (q(x)-2) u in Omega, u = 0 in R-N\Omega, where Omega is a bounded open subset of R-N with C-0,C-1-regularity and bounded boundary.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 41 条
[1]   Eigenvalue type problem in s(., .)-fractional Musielak–Sobolev spaces [J].
Mohammed Srati .
Journal of Elliptic and Parabolic Equations, 2024, 10 :387-413
[2]   On a class of nonlocal problems in new fractional Musielak-Sobolev spaces [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2022, 101 (06) :1933-1952
[3]   On Fractional Musielak-Sobolev Spaces and Applications to Nonlocal Problems [J].
de Albuquerque, J. C. ;
de Assis, L. R. S. ;
Carvalho, M. L. M. ;
Salort, A. .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
[4]   Some approximation properties in fractional Musielak-Sobolev spaces [J].
Baalal, Azeddine ;
Berghout, Mohamed ;
Ouali, El-Houcine .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
[5]   Embedding and extension results in fractional Musielak-Sobolev spaces [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Shimi, Mohammed ;
Srati, Mohammed .
APPLICABLE ANALYSIS, 2023, 102 (01) :195-219
[6]   Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak-Sobolev spaces [J].
Srati, M. ;
Azroul, E. ;
Benkirane, A. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
[7]   Renormalized Solutions for the Non-local Equations in Fractional Musielak-Sobolev Spaces [J].
Li, Ying ;
Zhang, Chao .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)
[8]   MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC PROBLEM IN DOUBLE WEIGHTED SOBOLEV SPACES [J].
Mezei, Ildiko Ilona .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (03) :33-48
[9]   Ground state solution for a generalized Choquard Schrodinger equation with vanishing potential in homogeneous fractional Musielak Sobolev spaces [J].
Gupta, Shilpa ;
Dwivedi, Gaurav .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (03) :1476-1502
[10]   ON AN EIGENVALUE PROBLEM INVOLVING THE FRACTIONAL (s, p)-LAPLACIAN [J].
Farcaseanu, Maria .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) :94-103