Eigenvalue type problem in s(., .)-fractional Musielak-Sobolev spaces

被引:0
|
作者
Srati, Mohammed [1 ]
机构
[1] Univ Mohammed First, High Sch Educ & Format ESEF, Oujda, Morocco
关键词
s(; )-Fractional Musielak-Sobolev spaces; Eigenvalue problems; Ekeland's ariational principle; REGULARITY CRITERION;
D O I
10.1007/s41808-024-00269-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the s(., .)-fractional Musielak-Sobolev spaces W-s(x,W-y) L-Phi x,L-y (Omega). Then, we show that there exists lambda(*) > 0 such that any lambda is an element of (0, lambda(*)) is an eigenvalue for the following problem, by means of Ekeland's variational principle (P-a){(-Delta)(s(x,.))(a(x,.)) u = lambda vertical bar u vertical bar (q(x)-2) u in Omega, u = 0 in R-N\Omega, where Omega is a bounded open subset of R-N with C-0,C-1-regularity and bounded boundary.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 39 条
  • [1] Eigenvalue type problem in s(., .)-fractional Musielak–Sobolev spaces
    Mohammed Srati
    Journal of Elliptic and Parabolic Equations, 2024, 10 : 387 - 413
  • [2] On a class of nonlocal problems in new fractional Musielak-Sobolev spaces
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    Srati, M.
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1933 - 1952
  • [3] On Fractional Musielak-Sobolev Spaces and Applications to Nonlocal Problems
    de Albuquerque, J. C.
    de Assis, L. R. S.
    Carvalho, M. L. M.
    Salort, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
  • [4] Some approximation properties in fractional Musielak-Sobolev spaces
    Baalal, Azeddine
    Berghout, Mohamed
    Ouali, El-Houcine
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [5] Embedding and extension results in fractional Musielak-Sobolev spaces
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Shimi, Mohammed
    Srati, Mohammed
    APPLICABLE ANALYSIS, 2023, 102 (01) : 195 - 219
  • [6] Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak-Sobolev spaces
    Srati, M.
    Azroul, E.
    Benkirane, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [7] Renormalized Solutions for the Non-local Equations in Fractional Musielak-Sobolev Spaces
    Li, Ying
    Zhang, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)
  • [8] MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC PROBLEM IN DOUBLE WEIGHTED SOBOLEV SPACES
    Mezei, Ildiko Ilona
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (03): : 33 - 48
  • [9] ON AN EIGENVALUE PROBLEM INVOLVING THE FRACTIONAL (s, p)-LAPLACIAN
    Farcaseanu, Maria
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 94 - 103
  • [10] Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
    Bahrouni, Sabri
    Salort, Ariel M.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27