Combinatorial Fock spaces and quantum symmetric pairs

被引:0
作者
Ehrig, Michael [1 ]
Gan, Kaixuan [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Liangxiang Campus, Beijing 100288, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Fock spaces; quantum groups at roots of unity; quantum symmetric pairs; ROOTS; REPRESENTATIONS; ALGEBRAS;
D O I
10.1080/00927872.2024.2318023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A way to construct the natural representation of the quantized affine algebra Uv(sll) is via the deformed Fock space by Misra and Miwa. This relates the classes of Weyl modules for Uq(slN) were q is a root of unity to the action of Uv(sll) as N tends toward infinity. In this paper we investigate the situation outside of type A. In classical types, we construct embeddings of the Grothendieck group of finite dimensional Uq(g)-modules into Fock spaces of different charges and define an action of an affine quantum symmetric pair that plays the role of the quantized affine algebra. We describe how the action is related to the linkage principal for quantum groups at a root of unity and tensor product multiplicities.
引用
收藏
页码:3328 / 3358
页数:31
相关论文
共 23 条
[1]   CELLULAR STRUCTURES USING Uq-TILTING MODULES [J].
Andersen, Henning Haahr ;
Stroppel, Catharina ;
Tubbenhauer, Daniel .
PACIFIC JOURNAL OF MATHEMATICS, 2018, 292 (01) :21-59
[2]   REPRESENTATIONS OF QUANTUM ALGEBRAS [J].
ANDERSEN, HH ;
POLO, P ;
KEXIN, W .
INVENTIONES MATHEMATICAE, 1991, 104 (01) :1-59
[3]   The strong linkage principle for quantum groups at roots of 1 [J].
Andersen, HH .
JOURNAL OF ALGEBRA, 2003, 260 (01) :2-15
[4]  
Ariki Susumu., 2002, Representations of quantum algebras and combinatorics of Young tableaux, V26, pviii+158, DOI [DOI 10.1090/ULECT/026, 10.1090/ulect/026]
[5]  
Bao H., 2018, Asterisque, V402
[6]   Categorification of quantum symmetric pairs I [J].
Bao, Huanchen ;
Shan, Peng ;
Wang, Weiqiang ;
Webster, Ben .
QUANTUM TOPOLOGY, 2018, 9 (04) :643-714
[7]   Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality [J].
Ehrig, Michael ;
Stroppel, Catharina .
ADVANCES IN MATHEMATICS, 2018, 331 :58-142
[8]   Affine flag varieties and quantum symmetric pairs [J].
Fan, Z. ;
Lai, C. ;
Li, Y. ;
Luo, L. ;
Wang, W. .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 265 (1285) :V-+
[9]   Q-ANALOGS OF CLIFFORD AND WEYL ALGEBRAS - SPINOR AND OSCILLATOR REPRESENTATIONS OF QUANTUM ENVELOPING-ALGEBRAS [J].
HAYASHI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :129-144
[10]  
Hong HK] Jin, 2002, GRADUATE STUDIES MAT, V42, DOI DOI 10.1090/GSM/042