Curvature-induced magnetization in a CrI3 bilayer: Flexomagnetic effect enhancement in van der Waals antiferromagnets

被引:7
作者
Qiao, Lei [1 ]
Sladek, Jan [2 ]
Sladek, Vladimir [2 ]
Kaminskiy, Alexey S. [3 ,4 ]
Pyatakov, Alexander P. [3 ,4 ]
Ren, Wei [1 ,5 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Int Ctr Quantum & Mol Struct, Phys Dept,State Key Lab Adv Special Steel,Shanghai, Shanghai 200444, Peoples R China
[2] Slovak Acad Sci, Inst Construction & Architecture, Bratislava 84503, Slovakia
[3] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[4] MIREA Russian Technol Univ, Moscow 119454, Russia
[5] Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金;
关键词
FERROMAGNETISM;
D O I
10.1103/PhysRevB.109.014410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The bilayer of CrI3 is a prototypical van der Waals (vdW) 2D antiferromagnetic material with magnetoelectric effect. It is not generally known, however, that for symmetry reasons the flexomagnetic effect, i.e., the strain gradient -induced magnetization, is also possible in this system. In the present paper, based on the first -principle calculations, we estimate the flexomagnetic effect to be 200 mu B center dot angstrom, which is two orders of magnitude higher than it was predicted for the referent antiperovskite flexomagnetic material Mn3GaN. The two major factors of flexomagnetic effect enhancement related to the peculiarities of antiferromagnetic structure of vdW magnets are revealed: the strain -dependent ferromagnetic coupling in each layer, and large interlayer distance separating antiferromagnetically coupled ions. Since 2D systems are naturally prone to mechanical deformation, the emerging field of flexomagnetism is of special interest for application in vdW spintronics, and straintronics in particular.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state [J].
Atanasov, Victor ;
Saxena, Avadh .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (17)
[2]   Strain-Gradient-Induced Unidirectional Magnetic Anisotropy in Nanocrystalline Thin Permalloy Films [J].
Belyaev, Boris A. ;
Izotov, Andrey V. ;
Solovev, Platon N. ;
Boev, Nikita M. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (01)
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer [J].
Botana, A. S. ;
Norman, M. R. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (04)
[5]   Straintronics: a new trend in micro- and nanoelectronics and materials science [J].
Bukharaev, A. A. ;
Zvezdin, K. ;
Pyatakov, A. P. ;
Fetisov, Y. K. .
PHYSICS-USPEKHI, 2018, 61 (12) :1175-1212
[6]   Epitaxy, exfoliation, and strain-induced magnetism in rippled Heusler membranes [J].
Du, Dongxue ;
Manzo, Sebastian ;
Zhang, Chenyu ;
Saraswat, Vivek ;
Genser, Konrad T. ;
Rabe, Karin M. ;
Voyles, Paul M. ;
Arnold, Michael S. ;
Kawasaki, Jason K. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Curved Magnetism in CrI3 [J].
Edstrom, Alexander ;
Amoroso, Danila ;
Picozzi, Silvia ;
Barone, Paolo ;
Stengel, Massimiliano .
PHYSICAL REVIEW LETTERS, 2022, 128 (17)
[8]   Spontaneous flexoelectric/flexomagnetic effect in nanoferroics [J].
Eliseev, Eugene A. ;
Morozovska, Anna N. ;
Glinchuk, Maya D. ;
Blinc, R. .
PHYSICAL REVIEW B, 2009, 79 (16)
[9]   Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity [J].
Gitman, Inna M. ;
Askes, Harm ;
Kuhl, Ellen ;
Aifantis, Elias C. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (09) :1099-1107
[10]   Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer [J].
Gross, I. ;
Akhtar, W. ;
Garcia, V. ;
Martinez, L. J. ;
Chouaieb, S. ;
Garcia, K. ;
Carretero, C. ;
Barthelemy, A. ;
Appel, P. ;
Maletinsky, P. ;
Kim, J. -V. ;
Chauleau, J. Y. ;
Jaouen, N. ;
Viret, M. ;
Bibes, M. ;
Fusil, S. ;
Jacques, V. .
NATURE, 2017, 549 (7671) :252-+