Optimization problems on nodes of Sturm-Liouville operators with Lp potentials

被引:0
作者
Chu, Jifeng [1 ]
Meng, Gang [2 ]
Wang, Feng [3 ]
Zhang, Meirong [4 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Changzhou Univ, Dept Math, Changzhou 213164, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Primary; 34B24; Secondary; 34C10; 34L40; 49J30; 49J40; SHALLOW-WATER EQUATION; INVERSE; EIGENVALUES; COEFFICIENTS; UNIQUENESS;
D O I
10.1007/s00208-023-02784-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to obtain the optimal characterizations of locations for all nodes of the classical Sturm-Liouville operators, given the L-p norms with 1 < p < infinity of the potentials. Regarding the ith node of the mth eigenfunction as a functional of the potential, we deduce critical equations to determine the minimizing potential such that the node is minimized. From the critical equations, we obtain two equivalent characterizations of the minimal nodes, which are written as nonlinear systems for 4 dimensional or 2-dimensional parameters. These optimal characterizations can yield the sharp lower and upper bounds for the locations of nodes.
引用
收藏
页码:1401 / 1417
页数:17
相关论文
共 41 条
[1]  
ATKINSON FV, 1987, J REINE ANGEW MATH, V375, P380
[2]  
Bennewitz C., 2020, SPECTRAL SCATTERING, DOI [10.1007/978-3-030-59088-8, DOI 10.1007/978-3-030-59088-8]
[3]  
Birkhoff G., 1969, ORDINARY DIFFERENTIA, V2nd, DOI DOI 10.1007/978-0-387-78168-6_1
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]   Estimates on eigenvalues of Laplacian [J].
Cheng, QM ;
Yang, HC .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :445-460
[6]   The inverse nodal problem for Hill's equation [J].
Cheng, Y. H. ;
Law, C. K. .
INVERSE PROBLEMS, 2006, 22 (03) :891-901
[7]  
Chu J., OPTIMAL LOCATIONS AL
[8]   Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations [J].
Chu, Jifeng ;
Meng, Gang .
MATHEMATISCHE ANNALEN, 2024, 388 (02) :1205-1224
[9]   Minimization of lowest positive periodic eigenvalue for the Camassa-Holm equation with indefinite potential [J].
Chu, Jifeng ;
Meng, Gang .
STUDIA MATHEMATICA, 2023, 268 (03) :241-258
[10]   Continuity and minimization of spectrum related with the periodic Camassa-Holm equation [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) :1678-1695