Delta Radiomic Features Predict Resection Margin Status and Overall Survival in Neoadjuvant-Treated Pancreatic Cancer Patients

被引:0
作者
Wang, Kai [1 ]
Karalis, John D. [2 ]
Elamir, Ahmed [1 ]
Bifolco, Alessandro [2 ]
Wachsmann, Megan [3 ]
Capretti, Giovanni [4 ,5 ]
Spaggiari, Paola [6 ]
Enrico, Sebastian [2 ]
Balasubramanian, Kishore [2 ]
Fatimah, Nafeesah [2 ]
Pontecorvi, Giada [2 ]
Nebbia, Martina [4 ]
Yopp, Adam [2 ]
Kaza, Ravi [7 ]
Pedrosa, Ivan [7 ]
Zeh, Herbert, III [2 ]
Polanco, Patricio [2 ]
Zerbi, Alessandro [4 ,5 ]
Wang, Jing [1 ]
Aguilera, Todd [1 ]
Ligorio, Matteo [2 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Surg, Dallas, TX USA
[3] Vet Affairs North Texas Hlth Care Syst, Dept Pathol, Dallas, TX USA
[4] IRCCS Humanitas Res Hosp, Pancreat Surg Unit, Rozzano, Italy
[5] Humanitas Univ, Dept Biomed Sci, Pieve Emanuele, Italy
[6] IRCCS Humanitas Res Hosp, Dept Pathol, Rozzano, Italy
[7] Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
关键词
CT TEXTURAL ANALYSIS; ADJUVANT CHEMOTHERAPY; OUTCOMES; GEMCITABINE;
D O I
10.1245/s10434-023-14877-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Neoadjuvant therapy (NAT) emerged as the standard of care for patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgery; however, surgery is morbid, and tools to predict resection margin status (RMS) and prognosis in the preoperative setting are needed. Radiomic models, specifically delta radiomic features (DRFs), may provide insight into treatment dynamics to improve preoperative predictions. Methods. We retrospectively collected clinical, pathological, and surgical data (patients with resectable, borderline, locally advanced, and metastatic disease), and pre/post-NAT contrast-enhanced computed tomography (CT) scans from PDAC patients at the University of Texas Southwestern Medical Center (UTSW; discovery) and Humanitas Hospital (validation cohort). Gross tumor volume was contoured from CT scans, and 257 radiomics features were extracted. DRFs were calculated by direct subtraction of pre/post-NAT radiomic features. Cox proportional models and binary prediction models, including/excluding clinical variables, were constructed to predict overall survival (OS), disease-free survival (DFS), and RMS. Results. The discovery and validation cohorts comprised 58 and 31 patients, respectively. Both cohorts had similar clinical characteristics, apart from differences in NAT (FOLFIRINOX vs. gemcitabine/nab-paclitaxel; p < 0.05) and type of surgery resections (pancreatoduodenectomy, distal or total pancreatectomy; p < 0.05). The model that combined clinical variables (pre-NAT carbohydrate antigen (CA) 19-9, the change in CA19-9 after NAT (Delta CA19-9), and resectability status) and DRFs outperformed the clinical feature-based models and other radiomics feature-based models in predicting OS (UTSW: 0.73; Humanitas: 0.66), DFS (UTSW: 0.75; Humanitas: 0.64), and RMS (UTSW 0.73; Humanitas: 0.69). Conclusions. Our externally validated, predictive/prognostic delta-radiomics models, which incorporate clinical variables, show promise in predicting the risk of predicting RMS in NAT-treated PDAC patients and their OS or DFS.
引用
收藏
页码:2608 / 2620
页数:13
相关论文
共 46 条
[1]   Surgical Outcome Results From SWOG S1505 A Randomized Clinical Trial of mFOLFIRINOX Versus Gemcitabine/Nab-paclitaxel for Perioperative Treatment of Resectable Pancreatic Ductal Adenocarcinoma [J].
Ahmad, Syed A. ;
Duong, Mai ;
Sohal, Davendra P. S. ;
Gandhi, Namita S. ;
Beg, Muhammad Shaalan ;
Wang-Gillam, Andrea ;
Wade, James L., III ;
Chiorean, Elena Gabriela ;
Guthrie, Katherine A. ;
Lowy, Andrew M. ;
Philip, Philip A. ;
Hochster, Howard S. .
ANNALS OF SURGERY, 2020, 272 (03) :481-486
[2]   Basics and Frontiers on Pancreatic Cancer for Radiation Oncology: Target Delineation, SBRT, SIB Technique, MRgRT, Particle Therapy, Immunotherapy and Clinical Guidelines [J].
Cellini, Francesco ;
Arcelli, Alessandra ;
Simoni, Nicola ;
Caravatta, Luciana ;
Buwenge, Milly ;
Calabrese, Angela ;
Brunetti, Oronzo ;
Genovesi, Domenico ;
Mazzarotto, Renzo ;
Deodato, Francesco ;
Mattiucci, Gian Carlo ;
Silvestris, Nicola ;
Valentini, Vincenzo ;
Morganti, Alessio Giuseppe .
CANCERS, 2020, 12 (07) :1-41
[3]   Radiomics model of contrast-enhanced computed tomography for predicting the recurrence of acute pancreatitis [J].
Chen, Yong ;
Chen, Tian-wu ;
Wu, Chang-qiang ;
Lin, Qiao ;
Hu, Ran ;
Xie, Chao-lian ;
Zuo, Hou-dong ;
Wu, Jia-long ;
Mu, Qi-wen ;
Fu, Quan-shui ;
Yang, Guo-qing ;
Zhang, Xiao Ming .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4408-4417
[4]   Delta Radiomics Features Analysis for the Prediction of Patients Outcomes in Glioblastoma Multiforme: The Generating Hypothesis Phase of GLIFA Project [J].
Chiesa, S. ;
Bartoli, F. Beghella ;
Longo, S. ;
Lupattelli, M. ;
Gatta, R. ;
Palumbo, I. ;
Balducci, M. ;
Tarducci, R. ;
Cusumano, D. ;
Masciocchi, C. ;
Lenkowicz, J. ;
Russo, R. ;
Floridi, P. ;
Dinapoli, N. ;
Valentini, V. ;
Aristei, C. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03) :S213-S213
[5]   Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma [J].
Cozzi, Luca ;
Comito, Tiziana ;
Fogliata, Antonella ;
Franzese, Ciro ;
Franceschini, Davide ;
Bonifacio, Cristiana ;
Tozzi, Angelo ;
Di Brina, Lucia ;
Clerici, Elena ;
Tomatis, Stefano ;
Reggiori, Giacomo ;
Lobefalo, Francesca ;
Stravato, Antonella ;
Mancosu, Pietro ;
Zerbi, Alessandro ;
Sollini, Martina ;
Kirienko, Margarita ;
Chiti, Arturo ;
Scorsetti, Marta .
PLOS ONE, 2019, 14 (01)
[6]   CT Enhancement and 3D Texture Analysis of Pancreatic Neuroendocrine Neoplasms [J].
D'Onofrio, Mirko ;
Ciaravino, Valentina ;
Cardobi, Nicolo ;
De Robertis, Riccardo ;
Cingarlini, Sara ;
Landoni, Luca ;
Capelli, Paola ;
Bassi, Claudio ;
Scarpa, Aldo .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Radiomics in stratification of pancreatic cystic lesions: Machine learning in action [J].
Dalal, Vipin ;
Carmicheal, Joseph ;
Dhaliwal, Amaninder ;
Jain, Maneesh ;
Kaur, Sukhwinder ;
Batra, Surinder K. .
CANCER LETTERS, 2020, 469 :228-237
[8]   R0 Versus R1 Resection Matters after Pancreaticoduodenectomy, and Less after Distal or Total Pancreatectomy for Pancreatic Cancer [J].
Demir, Ihsan Ekin ;
Jaeger, Carsten ;
Schlitter, A. Melissa ;
Konukiewitz, Bjoern ;
Stecher, Lynne ;
Schorn, Stephan ;
Tieftrunk, Elke ;
Scheufele, Florian ;
Calavrezos, Lenika ;
Schirren, Rebekka ;
Esposito, Irene ;
Weichert, Wilko ;
Friess, Helmut ;
Ceyhan, Gueralp O. .
ANNALS OF SURGERY, 2018, 268 (06) :1058-1068
[9]   Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer [J].
Fave, Xenia ;
Zhang, Lifei ;
Yang, Jinzhong ;
Mackin, Dennis ;
Balter, Peter ;
Gomez, Daniel ;
Followill, David ;
Jones, Aaron Kyle ;
Stingo, Francesco ;
Liao, Zhongxing ;
Mohan, Radhe ;
Court, Laurence .
SCIENTIFIC REPORTS, 2017, 7
[10]   Radiological and Surgical Implications of Neoadjuvant Treatment With FOLFIRINOX for Locally Advanced and Borderline Resectable Pancreatic Cancer [J].
Ferrone, Cristina R. ;
Marchegiani, Giovanni ;
Hong, Theodore S. ;
Ryan, David P. ;
Deshpande, Vikram ;
McDonnell, Erin I. ;
Sabbatino, Francesco ;
Santos, Daniela Dias ;
Allen, Jill N. ;
Blaszkowsky, Lawrence S. ;
Clark, Jeffrey W. ;
Faris, Jason E. ;
Goyal, Lipika ;
Kwak, Eunice L. ;
Murphy, Janet E. ;
Ting, David T. ;
Wo, Jennifer Y. ;
Zhu, Andrew X. ;
Warshaw, Andrew L. ;
Lillemoe, Keith D. ;
Fernandez-del Castillo, Carlos .
ANNALS OF SURGERY, 2015, 261 (01) :12-17