The conducting state of TRPA1 modulates channel lateral mobility

被引:0
|
作者
Sampieri, Alicia [1 ]
Padilla-Flores, Teresa [1 ]
Thawani, Aditya R. [2 ]
Lam, Pui-Ying [3 ,4 ]
Fuchter, Matthew J. [2 ]
Peterson, Randall [5 ]
Vaca, Luis [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Biol Celular & Desarrollo, Inst Fisiol Celular, Mexico City 04510, Mexico
[2] Imperial Coll London, Dept Chem, Mol Sci Res Hub, White City Campus, London W12 OBZ, England
[3] Med Coll Wisconsin, Dept Cell Biol Neurobiol & Anat, 8701 West Watertown Plank Rd, Milwaukee, WI 53226 USA
[4] Med Coll Wisconsin, Neurosci Res Ctr, 8701 West Watertown Plank Rd, Milwaukee, WI 53226 USA
[5] Univ Utah, Coll Pharm, 30 South 2000 East, Salt Lake City, UT 84112 USA
基金
英国工程与自然科学研究理事会;
关键词
TRPA1; channel; TRPswitch; Lateral mobility; Allyl isothiocyanate; Cholesterol; PLASMA-MEMBRANE; SINGLE-CHANNEL; LIPID RAFTS; DIFFUSION; RECEPTOR; DYNAMICS;
D O I
10.1016/j.ceca.2023.102800
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have studied Danio rerio (Zebrafish) TRPA1 channel using a method that combines single channel electrophysiological and optical recordings to evaluate lateral mobility and channel gating simultaneously in single channels. TRPA1 channel activation by two distinct chemical ligands: allyl isothiocyanate (AITC) and TRPswitch B, results in substantial reduction of channel lateral mobility at the plasma membrane. Incubation with the cholesterol sequestering agent methyl-beta-cyclodextrin (M beta CD), prevents the reduction on lateral mobility induced by the two chemical agonists. This results strongly suggest that the open conformation of TRPA1 modulates channel lateral mobility probably by facilitating the insertion of the channel into cholesterol-enriched domains at the plasma membrane.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sanguinarine is an agonist of TRPA1 channel
    Chi, Hao
    Zhang, Xian
    Chen, Xueqin
    Fang, Sui
    Ding, Qiang
    Gao, Zhaobing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 534 : 226 - 232
  • [2] Inflammation-the role of TRPA1 channel
    Yao, Kaifang
    Dou, Baomin
    Zhang, Yue
    Chen, Zhihan
    Li, Yanwei
    Fan, Zezhi
    Ma, Yajing
    Du, Simin
    Wang, Jiangshan
    Xu, Zhifang
    Liu, Yangyang
    Lin, Xiaowei
    Wang, Shenjun
    Guo, Yi
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [3] Contribution of TRPV1-TRPA1 Interaction to the Single Channel Properties of the TRPA1 Channel
    Staruschenko, Alexander
    Jeske, Nathaniel A.
    Akopian, Armen N.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (20) : 15167 - 15177
  • [4] Identification of in Vivo Disulfide Conformation of TRPA1 Ion Channel
    Wang, Liwen
    Cvetkov, Teresa L.
    Chance, Mark R.
    Moiseenkova-Bell, Vera Y.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (09) : 6169 - 6176
  • [5] The TRPA1 channel and oral hypoglycemic agents Is there complicity in β cell exhaustion?
    Manlio Diaz-Garcia, Carlos
    CHANNELS, 2013, 7 (06) : 420 - 422
  • [6] Chemical sensing properties of Takifugu TRPA1
    Oda, Mai
    Ninomiya, Kazuya
    Kurogi, Mako
    Saitoh, Osamu
    NEUROREPORT, 2015, 26 (15) : 908 - 914
  • [7] TRPA1 modulates noxious odor responses in Lygus hesperus
    Hull, J. Joe
    Yang, Yu-Wen
    Miyasaki, Katelyn
    Brent, Colin S.
    JOURNAL OF INSECT PHYSIOLOGY, 2020, 122
  • [8] The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges
    Wang, Zhen
    Ye, Di
    Ye, Jing
    Wang, Menglong
    Liu, Jianfang
    Jiang, Huimin
    Xu, Yao
    Zhang, Jishou
    Chen, Jiangbin
    Wan, Jun
    FRONTIERS IN PHARMACOLOGY, 2019, 10
  • [9] An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice
    Forni, Maria Fernanda
    Alberto Dominguez-Amoroch, Omar
    Monteiro de Assis, Leonardo Vinicius
    Kinker, Gabriela Sarti
    Moraes, Maria Nathalia
    de Lauro Castrucci, Ana Maria
    Saraiva Camara, Niels Olsen
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [10] Analogues of perillaketone as highly potent agonists of TRPA1 channel
    Bassoli, A.
    Borgonovo, G.
    Morini, G.
    De Petrocellis, L.
    Moriello, A. Schiano
    Di Marzo, V.
    FOOD CHEMISTRY, 2013, 141 (03) : 2044 - 2051