Hedges in quasi-pseudo-MV algebras

被引:0
作者
Chen, Zhaoying [1 ]
Chen, Wenjuan [1 ]
机构
[1] Univ Jinan, Sch Math Sci, 336 West Rd Nan Xinzhuang, Jinan 250022, Shandong, Peoples R China
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 49期
基金
中国博士后科学基金;
关键词
quasi-pseudo-MV algebras; Hedges; multiplicative interior operators; fil-ters;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notions of multiplicative interior operators (mi-operators, for short), additive closure operators (ac-operators, for short) and hedges in quasi-pseudo-MV algebras which will generalize the related contents in pseudo-MV algebras. First we discuss the relationship between mi-operators and ac-operators in a quasi-pseudo-MV algebra and investigate the properties of mi-operators in quasi -pseudo-MV algebras. Second we define and study hedges in quasi-pseudo-MV algebras. We also show that mi-operators are hedges. Finally, the properties of filters and weak filters in a quasi-pseudo-MV algebra with hedge are discussed.
引用
收藏
页码:619 / 633
页数:15
相关论文
共 18 条
  • [1] Belohlávek R, 2005, IEEE INT CONF FUZZY, P663
  • [2] Hedges and successors in basic algebras
    Chajda, Ivan
    [J]. SOFT COMPUTING, 2011, 15 (03) : 613 - 618
  • [3] States, state operators and quasi-pseudo-MV algebras
    Chen, Wenjuan
    Dudek, Wieslaw A.
    [J]. SOFT COMPUTING, 2018, 22 (24) : 8025 - 8040
  • [4] Ideals and congruences in quasi-pseudo-MV algebras
    Chen, Wenjuan
    Dudek, Wieslaw A.
    [J]. SOFT COMPUTING, 2018, 22 (12) : 3879 - 3889
  • [5] Chen WJ, 2017, J MULT-VALUED LOG S, V29, P105
  • [6] Some classes of quasi-pseudo-MV algebras
    Chen, Wenjuan
    Davvaz, Bijan
    [J]. LOGIC JOURNAL OF THE IGPL, 2016, 24 (05) : 655 - 672
  • [7] QUANTUM COMPUTATIONAL ALGEBRA WITH A NON-COMMUTATIVE GENERALIZATION
    Chen, Wenjuan
    Dudek, Wieslaw A.
    [J]. MATHEMATICA SLOVACA, 2016, 66 (01) : 19 - 34
  • [8] Very true pseudo-BCK algebras
    Ciungu, Lavinia Corina
    [J]. SOFT COMPUTING, 2019, 23 (21) : 10587 - 10600
  • [9] Georgescu G., 2001, Multiple-Valued Logics, V6, P95
  • [10] On very true
    Hájek, P
    [J]. FUZZY SETS AND SYSTEMS, 2001, 124 (03) : 329 - 333