Heart Rhythm Analysis Using Nonlinear Oscillators with Duffing-Type Connections

被引:2
作者
Fonkou, Rodrigue F. [1 ,2 ]
Savi, Marcelo A. [3 ]
机构
[1] Univ Inst Coast, Phys & Engn Sci Lab, POB 3001, Douala, Cameroon
[2] Univ Dschang, Res Unit Condensed Matter Elect & Signal Proc, POB 67, Dschang, Cameroon
[3] Univ Fed Rio De Janeiro, Ctr Nonlinear Mech, Dept Mech Engn, COPPE, POB 68-503, Rio De Janeiro, Brazil
关键词
nonlinear dynamics; chaos; biomechanics; Duffing equation; heart rhythms; cardiac system; transient disturbance; pacemaker; CORONARY-ARTERY-DISEASE; TIME-SERIES; DYNAMICS; MODEL; CARDIOLOGY; DIAGNOSIS; MECHANISM; CHAOS;
D O I
10.3390/fractalfract7080592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Heartbeat rhythms are related to a complex dynamical system based on electrical activity of the cardiac cells usually measured by the electrocardiogram (ECG). This paper presents a mathematical model to describe the electrical activity of the heart that consists of three nonlinear oscillators coupled by delayed Duffing-type connections. Coupling alterations and external stimuli are responsible for different cardiac rhythms. The proposed model is employed to build synthetic ECGs representing a variety of responses including normal and pathological rhythms: ventricular flutter, torsade de pointes, atrial flutter, atrial fibrillation, ventricular fibrillation, polymorphic ventricular tachycardia and supraventricular extrasystole. Moreover, the sinoatrial rhythm variations are described by time-dependent frequency, representing transient disturbances. This kind of situation can represent transitions between different pathological behaviors or between normal and pathological physiologies. In this regard, a nonlinear dynamics perspective is employed to describe cardiac rhythms, being able to represent either normal or pathological behaviors.
引用
收藏
页数:19
相关论文
共 62 条
  • [1] Discharges in mammalian sympathetic nerves
    Adrian, ED
    Bronk, DW
    Phillips, G
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1932, 74 (02): : 115 - 133
  • [2] [Anonymous], 2020, PHYSIONET DAT
  • [3] Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system
    Baleanu, Dumitru
    Sajjadi, Samaneh Sadat
    Asad, Jihad H.
    Jajarmi, Amin
    Estiri, Elham
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [4] Diagnostic accuracy of exercise stress testing for coronary artery disease: a systematic review and meta-analysis of prospective studies
    Banerjee, A.
    Newman, D. R.
    Van den Bruel, A.
    Heneghan, C.
    [J]. INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2012, 66 (05) : 477 - 492
  • [5] Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model
    Barrio, Roberto
    Shilnikov, Andrey
    [J]. JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2011, 1
  • [6] Bonow Robert O, 2008, Circulation, V118, pe523, DOI 10.1161/CIRCULATIONAHA.108.190748
  • [7] Mathematical modeling of cardiac function to evaluate clinical cases in adults and children
    Bozkurt, Selim
    [J]. PLOS ONE, 2019, 14 (10):
  • [8] Cardiac Conduction System: A Generalized Electrical Model
    Britin, S. N.
    Britina, M. A.
    Vlasenko, R. Ya
    [J]. BIOMEDICAL ENGINEERING-MEDITSINSKAYA TEKNIKA, 2021, 55 (01): : 41 - 45
  • [9] ECG monitoring of post-stroke occurring arrhythmias: an observational study using 7-day Holter ECG
    Carrarini, Claudia
    Di Stefano, V
    Russo, M.
    Dono, F.
    Di Pietro, M.
    Furia, N.
    Onofrj, M.
    Bonanni, L.
    Faustino, M.
    De Angelis, M., V
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Cheffer A., 2021, Henry J. Cardiol. Cardiovasc. Med, V5, P022