In-situ modification of nanofiltration and reverse osmosis membranes for organic micropollutants and salts removal: A review

被引:35
|
作者
An, Mei [1 ,2 ]
Gutierrez, Leonardo [1 ,2 ,3 ]
D'Haese, Arnout [1 ,2 ]
Tan, Lianshuai [1 ,2 ]
Verliefde, Arne [1 ,2 ]
Cornelissen, Emile [1 ,2 ,4 ]
机构
[1] Univ Ghent, Particle & Interfacial Technol PaInT, Coupure Links 653, B-9000 Ghent, Belgium
[2] Univ Ghent, Ctr Adv Proc Technol Urban Resource Recovery CAPTU, Frieda Saeysstraat 1, B-9052 Ghent, Belgium
[3] Univ Pacifco, Fac Mar & Medio Ambiente, Km 7-5 Via Costa Mz520 Solar 1, Quito 090708, Ecuador
[4] KWR Water Res Inst, Groningenhaven 7, NL-3433 PE Nieuwegein, Netherlands
关键词
Nanofiltration; Reverse osmosis; In-situ modification; Organic micropollutants; NaCl; PERSONAL CARE PRODUCTS; WASTE-WATER TREATMENT; ENDOCRINE DISRUPTING COMPOUNDS; SURFACE MODIFICATION; DRINKING-WATER; EMERGING CONTAMINANTS; GRAFT-POLYMERIZATION; POLYAMIDE MEMBRANES; PHARMACEUTICALS; REJECTION;
D O I
10.1016/j.desal.2023.116861
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The thin film composite (TFC) polyamide (PA) nanofiltration (NF) and reverse osmosis (RO) membranes are the two of the most robust technologies for the removal of organic micropollutants (OMPs) for (waste) water treatment, and improving sodium chloride (NaCl) rejection for sea water desalination to tackle water scarcity. However, the neutral, smaller and polar OMPs are often ineffectively removed by commercial NF/RO membranes. In-situ NF and RO membrane surface modification is a promising and viable option for improving the rejection of OMPs in existing membrane-based treatment plants without changing the production process. However, there is a research gap in the retention of different groups of OMPs by in-situ modified NF and RO membranes. To fill the research gap in recent years, this current review comprehensively analyzed the impact of reported in-situ NF and RO membranes modification strategies on water permeability, the retention of OMPs grouped by size, hydrophobicity, and charge, and NaCl rejection, where the tradeoff between water/OMPs permeability and water/NaCl permeability received special emphasis. Furthermore, optimal modification strategies to improve OMPs rejection in different groups by NF and RO have been suggested.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Chemical Modification of Polyethersulfone Nanofiltration Membranes: A Review
    Van der Bruggen, B.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 114 (01) : 630 - 642
  • [42] Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 2: Countermeasures and Applications
    Maeda, Yasushi
    MEMBRANES, 2025, 15 (03)
  • [43] Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes
    Coskun, Tamer
    Debik, Eyup
    Demir, Neslihan Manav
    DESALINATION, 2010, 259 (1-3) : 65 - 70
  • [44] Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents
    Turan, M
    Ates, A
    Inanc, B
    WATER SCIENCE AND TECHNOLOGY, 2002, 45 (12) : 355 - 360
  • [45] Rejection and adsorption behaviour of phytoestrogens by nanofiltration and reverse osmosis membranes
    Hai Quang Dang
    Price, William E.
    Long Duc Nghiem
    DESALINATION AND WATER TREATMENT, 2015, 54 (4-5) : 890 - 899
  • [46] Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration
    Yang, Linyan
    She, Qianhong
    Wan, Man Pun
    Wang, Rong
    Chang, Victor W. -C.
    Tang, Chuyang Y.
    WATER RESEARCH, 2017, 116 : 116 - 125
  • [47] Removal of N-Nitrosamines and Their Precursors by Nanofiltration and Reverse Osmosis Membranes
    Miyashita, Yu
    Park, Sang-Hyuck
    Hyung, Hoon
    Huang, Ching-Hua
    Kim, Jae-Hong
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2009, 135 (09) : 788 - 795
  • [48] The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater
    Bohdziewicz, J
    Bodzek, M
    Wasik, E
    DESALINATION, 1999, 121 (02) : 139 - 147
  • [49] Rejection of an emerging small neutral organic micropollutant by in-situ nanofiltration membrane modification for water treatment
    An, Mei
    Gutierrez, Leonardo
    D'Haese, Arnout
    Morent, Rino
    De Geyter, Nathalie
    Cornelissen, Emile
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 380
  • [50] Modeling the Retention of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated Neural Networks
    Khaouane, Latifa
    Ammi, Yamina
    Hanini, Salah
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2017, 42 (04) : 1443 - 1453